View publication

Self-supervised learning (SSL) on graphs generates node and graph representations (i.e., embeddings) that can be used for downstream tasks such as node classification, node clustering, and link prediction. Graph SSL is particularly useful in scenarios with limited or no labeled data. Existing SSL methods predominantly follow contrastive or generative paradigms, each excelling in different tasks: contrastive methods typically perform well on classification tasks, while generative methods often excel in link prediction. In this paper, we present a novel architecture for graph SSL that integrates the strengths of both approaches. Our framework introduces community-aware node-level contrastive learning, providing more robust and effective positive and negative node pairs generation, alongside graph-level contrastive learning to capture global semantic information. Additionally, we employ a comprehensive augmentation strategy that combines feature masking, node perturbation, and edge perturbation, enabling robust and diverse representation learning. By incorporating these enhancements, our model achieves superior performance across multiple tasks, including node classification, clustering, and link prediction. Evaluations on open benchmark datasets demonstrate that our model outperforms state-of-the-art methods, achieving a performance lift of 0.23%-2.01% depending on the task and dataset.

Related readings and updates.

Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper, we propose a self-supervised method for learning representations of geographic locations from unlabeled GPS trajectories to solve downstream geospatial computer vision tasks. Tiles resulting from a…

Read more

Graph Neural Networks (GNNs) have achieved great success in various tasks, but their performance highly relies on a large number of labeled nodes, which typically requires considerable human effort. GNN-based Active Learning (AL) methods are proposed to improve the labeling efficiency by selecting the most valuable nodes to label. Existing methods assume an oracle can correctly categorize all the selected nodes and thus just focus on the node…

Read more