View publication

We present a generic and flexible Reinforcement Learning (RL) based meta-learning framework for the problem of few-shot learning. During training, it learns the best optimization algorithm to produce a learner (ranker/classifier, etc) by exploiting stable patterns in loss surfaces. Our method implicitly estimates the gradients of a scaled loss function while retaining the general properties intact for parameter updates. Besides providing improved performance on few-shot tasks, our framework could be easily extended to do network architecture search. We further propose a novel dual encoder, affinity-score based decoder topology that achieves additional improvements to performance. Experiments on an internal dataset, MQ2007, and AwA2 show our approach outperforms existing alternative approaches by 21%, 8%, and 4% respectively on accuracy and NDCG metrics. On Mini-ImageNet dataset our approach achieves comparable results with Prototypical Networks. Empirical evaluations demonstrate that our approach provides a unified and effective framework.

This paper was accepted by 7th ICML Workshop on Automated Machine Learning (AutoML).

Related readings and updates.

Apple at ICML 2020

Apple sponsored the thirty-seventh International Conference on Machine Learning (ICML), which was held virtually from July 12 to 18. ICML is a leading global gathering dedicated to advancing the machine learning field.

See event details

Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment

In most machine learning training paradigms a fixed, often handcrafted, loss function is assumed to be a good proxy for an underlying evaluation metric. In this work we assess this assumption by meta-learning an adaptive loss function to directly optimize the evaluation metric. We propose a sample efficient reinforcement learning approach for adapting the loss dynamically during training. We empirically show how this formulation improves…
See paper details