View publication

This paper considers the Pointer Value Retrieval (PVR) benchmark introduced in [ZRKB21], where a `reasoning' function acts on a string of digits to produce the label. More generally, the paper considers the learning of logical functions with gradient descent (GD) on neural networks. It is first shown that in order to learn logical functions with gradient descent on symmetric neural networks, the generalization error can be lower-bounded in terms of the noise-stability of the target function, supporting a conjecture made in [ZRKB21]. It is then shown that in the distribution shift setting, when the data withholding corresponds to freezing a single feature (referred to as canonical holdout), the generalization error of gradient descent admits a tight characterization in terms of the Boolean influence for several relevant architectures. This is shown on linear models and supported experimentally on other models such as MLPs and Transformers. In particular, this puts forward the hypothesis that for such architectures and for learning logical functions such as PVR functions, GD tends to have an implicit bias towards low-degree representations, which in turn gives the Boolean influence for the generalization error under quadratic loss.

Related readings and updates.

When Can Transformers Reason With Abstract Symbols?

We investigate the capabilities of transformer models on relational reasoning tasks. In these tasks, models are trained on a set of strings encoding abstract relations, and are then tested out-of-distribution on data that contains symbols that did not appear in the training dataset. We prove that for any relational reasoning task in a large family of tasks, transformers learn the abstract relations and generalize to the test set when trained by…
See paper details

Generalization on the Unseen, Logic Reasoning and Degree Curriculum

This paper considers the learning of logical (Boolean) functions with focus on the generalization on the unseen (GOTU) setting, a strong case of out-of-distribution generalization. This is motivated by the fact that the rich combinatorial nature of data in certain reasoning tasks (e.g., arithmetic/logic) makes representative data sampling challenging, and learning successfully under GOTU gives a first vignette of an 'extrapolating' or 'reasoning'…
See paper details