In visual retrieval systems, updating the embedding model requires recomputing features for every piece of data. This expensive process is referred to as backfilling. Recently, the idea of backward compatible training (BCT) was proposed. To avoid the cost of backfilling, BCT modifies training of the new model to make its representations compatible with those of the old model. However, BCT can significantly hinder the performance of the new model. In this work, we propose a new learning paradigm for representation learning: forward compatible training (FCT). In FCT, when the old model is trained, we also prepare for a future unknown version of the model. We propose learning side-information, an auxiliary feature for each sample which facilitates future updates of the model. To develop a powerful and flexible framework for model compatibility, we combine side-information with a forward transformation from old to new embeddings. Training of the new model is not modified, hence, its accuracy is not degraded. We demonstrate significant retrieval accuracy improvement compared to BCT for various datasets: ImageNet-1k (+18.1%), Places-365 (+5.4%), and VGG-Face2 (+8.3%). FCT obtains model compatibility when the new and old models are trained across different datasets, losses, and architectures.

*= Equal Contribution

Related readings and updates.

MUSCLE: A Model Update Strategy for Compatible LLM Evolution

Large Language Models (LLMs) are regularly updated to enhance performance, typically through changes in data or architecture. Within the update process, developers often prioritize improving overall performance metrics, paying less attention to maintaining compatibility with earlier model versions. Instance-level degradation (instance regression) of performance from one model version to the next can interfere with a user's mental model of the…
See paper details

FastFill: Efficient Compatible Model Update

*= Equal Contributors In many retrieval systems the original high dimensional data (e.g., images) is mapped to a lower dimensional feature through a learned embedding model. The task of retrieving the most similar data from a gallery set to a given query data is performed through similarity comparison on features. When the embedding model is updated, it might produce features that are not comparable/compatible with features already in the gallery…
See paper details