Faster Rates For Federated Variational Inequalities
AuthorsGuanghui Wang†, Satyen Kale
Faster Rates For Federated Variational Inequalities
AuthorsGuanghui Wang†, Satyen Kale
In this paper, we study federated optimization for solving stochastic variational inequalities (VIs), a problem that has attracted growing attention in recent years. Despite substantial progress, a significant gap remains between existing convergence rates and the state-of-the-art bounds known for federated convex optimization. In this work, we address this limitation by establishing a series of improved convergence rates. First, we show that, for general smooth and monotone variational inequalities, the classical Local Extra SGD algorithm admits tighter guarantees under a refined analysis. Next, we identify an inherent limitation of Local Extra SGD, which can lead to excessive client drift. Motivated by this observation, we propose a new algorithm, the Local Inexact Proximal Point Algorithm with Extra Step (LIPPAX), and show that it mitigates client drift and achieves improved guarantees in several regimes, including bounded Hessian, bounded operator, and low-variance settings. Finally, we extend our results to federated composite variational inequalities and establish improved convergence guarantees.
Improved Modelling of Federated Datasets using Mixtures-of-Dirichlet-Multinomials
June 12, 2024research area Data Science and Annotation, research area Methods and Algorithmsconference ICML
In practice, training using federated learning can be orders of magnitude slower than standard centralized training. This severely limits the amount of experimentation and tuning that can be done, making it challenging to obtain good performance on a given task. Server-side proxy data can be used to run training simulations, for instance for hyperparameter tuning. This can greatly speed up the training pipeline by reducing the number of tuning…
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
February 2, 2022research area Methods and Algorithms, research area Tools, Platforms, Frameworks
We describe the design of our federated task processing system. Originally, the system was created to support two specific federated tasks: evaluation and tuning of on-device ML systems, primarily for the purpose of personalizing these systems. In recent years, support for an additional federated task has been added: federated learning (FL) of deep neural networks. To our knowledge, only one other system has been described in literature that…