View publication

Respiratory rate (RR) is a clinical metric used to assess overall health and physical fitness. An individual’s RR can change due to normal activities like physical exertion during exercise or due to chronic and acute illnesses. Remote estimation of RR offers a cost-effective method to track disease progression and cardio-respiratory fitness over time. This work investigates a model-driven approach to estimate RR from short audio segments obtained after physical exertion in healthy adults. Data was collected from 21 individuals using microphone-enabled, near-field headphones before, during, and after strenuous exercise. RR was manually annotated by counting audibly perceived inhalations and exhalations. A multi-task Long-Short Term Memory (LSTM) network with convolutional layers was implemented to process mel-filterbank energies, estimate RR in varying background noise conditions, and predict heavy breathing (greater than 25 breaths per minute). The multi-task model performs both classification and regression tasks and leverages a mixture of loss functions. It was observed that RR can be estimated with a concordance correlation coefficient (CCC) of 0.76 and a mean squared error (MSE) of 0.2, demonstrating that audio can be a viable signal for passively estimating RR.

Related readings and updates.

Model-based Metrics: Sample-efficient Estimates of Predictive Model Subpopulation Performance

Machine learning models − now commonly developed to screen, diagnose, or predict health conditions − are evaluated with a variety of performance metrics. An important first step in assessing the practical utility of a model is to evaluate its average performance over an entire population of interest. In many settings, it is also critical that the model makes good predictions within predefined subpopulations. For instance, showing that a model is…
See paper details

What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation

Deep learning algorithms are well-known to have a propensity for fitting the training data very well and often fit even outliers and mislabeled data points. Such fitting requires memorization of training data labels, a phenomenon that has attracted significant research interest but has not been given a compelling explanation so far. A recent work of Feldman (2019) proposes a theoretical explanation for this phenomenon based on a combination of…
See paper details