The mechanisms behind the success of multi-view self-supervised learning (MVSSL) are not yet fully understood. Contrastive MVSSL methods have been studied though the lens of InfoNCE, a lower bound of the Mutual Information (MI). However, the relation between other MVSSL methods and MI remains unclear. We consider a different lower bound on the MI consisting of an entropy and a reconstruction term (ER), and analyze the main MVSSL families through its lens. Through this ER bound, we show that clustering-based methods such as DeepCluster and SwAV maximize the MI. We also re-interpret the mechanisms of distillation-based approaches such as BYOL and DINO, showing that they explicitly maximize the reconstruction term and implicitly encourage a stable entropy, and we confirm this empirically. We show that replacing the objectives of common MVSSL methods with this ER bound achieves competitive performance, while making all these methods stable when training with smaller batch sizes.

Related readings and updates.

Homomorphic Self-Supervised Learning

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022. Many state of the art self-supervised learning approaches fundamentally rely on transformations applied to the input in order to selectively extract task-relevant information. Recently, the field of equivariant deep learning has developed to introduce structure into the feature space of deep neural networks, specifically with respect to such…
See paper details

Reconstructing Training Data from Diverse ML Models by Ensemble Inversion

Model Inversion (MI), in which an adversary abuses access to a trained Machine Learning (ML) model attempting to infer sensitive information about its original training data, has attracted increasing research attention. During MI, the trained model under attack (MUA) is usually frozen and used to guide the training of a generator, such as a Generative Adversarial Network (GAN), to reconstruct the distribution of the original training data of that…
See paper details