Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.

Related readings and updates.

Extracurricular Learning: Knowledge Transfer Beyond Empirical Distribution

Knowledge distillation has been used to transfer knowledge learned by a sophisticated model (teacher) to a simpler model (student). This technique is widely used to compress model complexity. However, in most applications the compressed student model suffers from an accuracy gap with its teacher. We propose extracurricular learning, a novel knowledge distillation method, that bridges this gap by (1) modeling student and teacher output…
See paper details

An Exploration of Data Augmentation and Sampling Techniques for Domain-Agnostic Question Answering

This paper was accepted at the 2nd Workshop on Machine Reading for Question Answering at the EMNLP 2019 Conference. To produce a domain-agnostic question answering model for the Machine Reading Question Answering (MRQA) 2019 Shared Task, we investigate the relative benefits of large pre-trained language models, various data sampling strategies, as well as query and context paraphrases generated by back-translation. We find a simple negative…
See paper details