Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.

Related readings and updates.

A Platform for Continuous Construction and Serving of Knowledge At Scale

We introduce Saga, a next-generation knowledge construction and serving platform for powering knowledge-based applications at industrial scale. Saga follows a hybrid batch-incremental design to continuously integrate billions of facts about real-world entities and construct a central knowledge graph that supports multiple production use cases with diverse requirements around data freshness, accuracy, and availability. In this paper, we discuss…
See paper details

EMNLP 2021

Apple sponsored the Empirical Methods in Natural Language Processing (EMNLP) conference, which was held in a hybrid format from November 7 to 11. EMNLP is a conference focused on natural language processing.

See event details