View publication

Direct Delta Mush is a novel skinning deformation technique introduced by Le and Lewis (2019). It generalizes the iterative Delta Mush algorithm of Mancewicz et al (2014), providing a direct solution with improved efficiency and control. Compared to Linear Blend Skinning, Direct Delta Mush offers better quality of deformations and ease of authoring at comparable performance. However, Direct Delta Mush does not handle non-rigid joint transformations correctly which limits its application for most production environments. This paper presents an extension to Direct Delta Mush that integrates the non-rigid part of joint transformations into the algorithm. In addition, the paper also describes practical considerations for computing the orthogonal component of the transformation and stability issues observed during the implementation and testing.

Related readings and updates.

Modality Dropout for Multimodal Device Directed Speech Detection using Verbal and Non-Verbal Features

Device-directed speech detection (DDSD) is the binary classification task of distinguishing between queries directed at a voice assistant versus side conversation or background speech. State-of-the-art DDSD systems use verbal cues (for example, acoustic, text and/or automatic speech recognition system (ASR) features) to classify speech as device-directed or otherwise, and often have to contend with one or more of these modalities being…
See paper details

A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling

Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta demonstrates that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously and has lead to significant interest in the shuffle model of privacy We show that random shuffling of data records that are input to…
See paper details