View publication

Direct Delta Mush is a novel skinning deformation technique introduced by Le and Lewis (2019). It generalizes the iterative Delta Mush algorithm of Mancewicz et al (2014), providing a direct solution with improved efficiency and control. Compared to Linear Blend Skinning, Direct Delta Mush offers better quality of deformations and ease of authoring at comparable performance. However, Direct Delta Mush does not handle non-rigid joint transformations correctly which limits its application for most production environments. This paper presents an extension to Direct Delta Mush that integrates the non-rigid part of joint transformations into the algorithm. In addition, the paper also describes practical considerations for computing the orthogonal component of the transformation and stability issues observed during the implementation and testing.

Related readings and updates.

Federated Learning for Speech Recognition: Revisiting Current Trends Towards Large-Scale ASR

This paper was accepted at the Federated Learning in the Age of Foundation Models workshop at NeurIPS 2023. While automatic speech recognition (ASR) has witnessed remarkable achievements in recent years, it has not garnered a widespread focus within the federated learning (FL) and differential privacy (DP) communities. Meanwhile, ASR is also a well suited benchmark for FL and DP as there is (i) a natural data split across users by using speaker…
See paper details

A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling

Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta demonstrates that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously and has lead to significant interest in the shuffle model of privacy We show that random shuffling of nnn data records that are input to…
See paper details