View publication

Direct Delta Mush is a novel skinning deformation technique introduced by Le and Lewis (2019). It generalizes the iterative Delta Mush algorithm of Mancewicz et al (2014), providing a direct solution with improved efficiency and control. Compared to Linear Blend Skinning, Direct Delta Mush offers better quality of deformations and ease of authoring at comparable performance. However, Direct Delta Mush does not handle non-rigid joint transformations correctly which limits its application for most production environments. This paper presents an extension to Direct Delta Mush that integrates the non-rigid part of joint transformations into the algorithm. In addition, the paper also describes practical considerations for computing the orthogonal component of the transformation and stability issues observed during the implementation and testing.

Related readings and updates.

On-device Panoptic Segmentation for Camera Using Transformers

Camera (in iOS and iPadOS) relies on a wide range of scene-understanding technologies to develop images. In particular, pixel-level understanding of image content, also known as image segmentation, is behind many of the app's front-and-center features. Person segmentation and depth estimation powers Portrait Mode, which simulates effects like the shallow depth of field and Stage Light. Person and skin segmentation power semantic rendering in group shots of up to four people, optimizing contrast, lighting, and even skin tones for each subject individually. Person, skin, and sky segmentation power Photographic Styles, which creates a personal look for your photos by selectively applying adjustments to the right areas guided by segmentation masks, while preserving skin tones. Sky segmentation and skin segmentation power denoising and sharpening algorithms for better image quality in low-texture regions. Several other features consume image segmentation as an essential input.

See article details

A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling

This paper was accepted at the Theory and Practice of Differential Privacy workshop at the ICML 2021 conference. Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta demonstrates that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously and has lead to significant…
See paper details