View publication

Multimodal vision-language models (VLMs) continue to achieve ever-improving scores on chart understanding benchmarks. Yet, we find that this progress does not fully capture the breadth of visual reasoning capabilities essential for interpreting charts. We introduce EncQA, a novel benchmark informed by the visualization literature, designed to provide systematic coverage of visual encodings and analytic tasks that are crucial for chart understanding. EncQA provides 2,076 synthetic question-answer pairs, enabling balanced coverage of six visual encoding channels (position, length, area, color quantitative, color nominal, and shape) and eight tasks (find extrema, retrieve value, find anomaly, filter values, compute derived value exact, compute derived value relative, correlate values, and correlate values relative). Our evaluation of 9 state-of-the-art VLMs reveals that performance varies significantly across encodings within the same task, as well as across tasks. Contrary to expectations, we observe that performance does not improve with model size for many task-encoding pairs. Our results suggest that advancing chart understanding requires targeted strategies addressing specific visual reasoning gaps, rather than solely scaling up model or dataset size.

Related readings and updates.

Vision Language Models (VLMs) enable visual understanding alongside textual inputs. They are typically built by passing visual tokens from a pretrained vision encoder to a pretrained Large Language Model (LLM) through a projection layer. By leveraging the rich visual representations of the vision encoder and the world knowledge and reasoning capabilities of the LLM, VLMs can be useful for a wide range of applications, including accessibility…

Read more

Scaling the input image resolution is essential for enhancing the performance of Vision Language Models (VLMs), particularly in text-rich image understanding tasks. However, popular visual encoders such as ViTs become inefficient at high resolutions due to the large number of tokens and high encoding latency. At different operational resolutions, the vision encoder of a VLM can be optimized along two axes: reducing encoding latency and minimizing…

Read more