View publication

Rendering scenes observed in a monocular video from novel viewpoints is a chal- lenging problem. For static scenes the community has studied both scene-specific optimization techniques, which optimize on every test scene, and generalized tech- niques, which only run a deep net forward pass on a test scene. In contrast, for dy- namic scenes, scene-specific optimization techniques exist, but, to our best knowl- edge, there is currently no generalized method for dynamic novel view synthesis from a given monocular video. To explore whether generalized dynamic novel view synthesis from monocular videos is possible today, we establish an analy- sis framework based on existing techniques and work toward the generalized ap- proach. We find a pseudo-generalized process without scene-specific appearance optimization is possible, but geometrically and temporally consistent depth esti- mates are needed. Despite no scene-specific appearance optimization, the pseudo- generalized approach improves upon some scene-specific methods. For more information see project page at https://xiaoming-zhao.github.io/projects/pgdvs.

Related readings and updates.

Fast and Explicit Neural View Synthesis

We study the problem of novel view synthesis from sparse source observations of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. Our approach explicitly encodes observations into a volumetric representation that enables amortized rendering. We demonstrate that although continuous radiance field representations have gained a lot of…
See paper details

RetrievalFuse: Neural 3D Scene Reconstruction with a Database

3D reconstruction of large scenes is a challenging problem due to the high-complexity nature of the solution space, in particular for generative neural networks. In contrast to traditional generative learned models which encode the full generative process into a neural network and can struggle with maintaining local details at the scene level, we introduce a new method that directly leverages scene geometry from the training database. First, we…
See paper details