View publication

Aligning large language models (LLMs) with human expectations without human-annotated preference data is an important problem. In this paper, we propose a method to evaluate the response preference by using the output probabilities of response pairs under contrastive prompt pairs, which could achieve better performance on LLaMA2-7B and LLaMA2-13B compared to RLAIF. Based on this, we propose an automatic alignment method, Direct Large Model Alignment (DLMA). First, we use contrastive prompt pairs to automatically generate preference data. Then, we continue to evaluate the generated preference data using contrastive prompt pairs and calculate a self-rewarding score. Finally, we use the DPO algorithm to effectively align LLMs by combining this self-rewarding score. In the experimental stage, our DLMA method could surpass the RLHF method without relying on human-annotated preference data.

Related readings and updates.

Symbol Guided Hindsight Priors for Reward Learning from Human Preferences

This paper was accepted at the "Human in the Loop Learning Workshop" at NeurIPS 2022. Specification of reward functions for Reinforcement Learning is a challenging task which is bypassed by the framework of Preference Based Learning methods which instead learn from preference labels on trajectory queries. These methods, however, still suffer from high requirements of preference labels and often would still achieve low reward recovery. We present…
See paper details

Rewards Encoding Environment Dynamics Improves Preference-based Reinforcement Learning

This paper was accepted at the workshop at "Human-in-the-Loop Learning Workshop" at NeurIPS 2022. Preference-based reinforcement learning (RL) algorithms help avoid the pitfalls of hand-crafted reward functions by distilling them from human preference feedback, but they remain impractical due to the burdensome number of labels required from the human, even for relatively simple tasks. In this work, we demonstrate that encoding environment…
See paper details