View publication

Diffusion probabilistic models have quickly become a major approach for generative modeling of images, 3D geometry, video and other domains. However, to adapt diffusion generative modeling to these domains the denoising network needs to be carefully designed for each domain independently, oftentimes under the assumption that data lives in an Euclidean grid. In this paper we introduce Diffusion Probabilistic Fields (DPF), a diffusion model that can learn distributions over continuous functions defined over metric spaces, commonly known as fields. We extend the formulation of diffusion probabilistic models to deal with this field parametrization in an explicit way, enabling us to define and end-to-end learning algorithm that side-steps the requirement of representing fields with latent vectors as in previous approaches. We empirically show that, while using the same denoising network, DPF effectively deals with different modalities like 2D images and 3D geometry, in addition to modeling distributions over fields defined on non-Euclidean metric spaces.

Related readings and updates.

Manifold Diffusion Fields

This paper was accepted at the Diffusion Models workshop at NeurIPS 2023. Score-based models have quickly become the de facto choice for generative modeling of images, text and more recently molecules. However, to adapt a score-based generative modeling to these domains the score network needs to be carefully designed, hampering its applicability to arbitrary data domains. In this paper we tackle this problem by taking a \textit{functional} view…
See paper details

Stable Diffusion with Core ML on Apple Silicon

Today, we are excited to release optimizations to Core ML for Stable Diffusion in macOS 13.1 and iOS 16.2, along with code to get started with deploying to Apple Silicon devices.

See paper details