View publication

This paper was accepted at the Adaptive Foundation Models (AFM) workshop at NeurIPS Workshop 2024.

Follow-up conversations with virtual assistants (VAs) enable a user to seamlessly interact with a VA without the need to repeatedly invoke it using a keyword (after the first query). Therefore, accurate Device-Directed Speech Detection (DDSD) from the follow-up queries is critical for enabling naturalistic user experience. To this end, we explore the notion of Large Language Models (LLMs) and model the first query when making inference about the follow-ups (based on the ASR-decoded text), via prompting of a pretrained LLM, or by adapting a binary classifier on top of the LLM. In doing so, we also exploit the ASR uncertainty when designing the LLM prompts. We show on the real-world dataset of follow-up conversations that this approach yields large gains (20-40% reduction in false alarms at 10% fixed false rejects) due to the joint modeling of the previous speech context and ASR uncertainty, compared to when follow-ups are modeled alone.

Related readings and updates.

A Multi-signal Large Language Model for Device-directed Speech Detection

We present an architecture for device-directed speech detection that treats the task as a text-generation problem. We use a multi-modal fusion approach that combines acoustic information from the recorded audio waveform with text and confidence information obtained from an automatic speech recognition system. The audio waveform is represented as a sequence of continuous embeddings by an audio encoder and presented as a prefix token to a…
See paper details

Leveraging Large Language Models for Exploiting ASR Uncertainty

With the help of creative prompt engineering and in-context learning, large language models (LLMs) are known to generalize well on a variety of text-based natural language processing (NLP) tasks. However, for performing well on spoken language understanding (SLU) tasks, LLMs either need to be equipped with in-built speech modality or they need to rely on speech-to-text conversion from an off-the-shelf automation speech recognition (ASR) system…
See paper details