View publication

Lack of diversity in data collection has caused significant failures in machine learning (ML) applications. While ML developers perform post-collection interventions, these are time intensive and rarely comprehensive. Thus, new methods to track and manage data collection, iteration, and model training are necessary for evaluating whether datasets reflect real world variability. We present designing data, an iterative, bias mitigating approach to data collection connecting HCI concepts with ML techniques. Our process includes (1) Pre-Collection Planning, to reflexively prompt and document expected data distributions; (2) Collection Monitoring, to systematically encourage sampling diversity; and (3) Data Familiarity, to identify samples that are unfamiliar to a model through Out-of-Distribution (OOD) methods. We instantiate designing data through our own data collection and applied ML case study. We find models trained on "designed" datasets generalize better across intersectional groups than those trained on similarly sized but less targeted datasets, and that data familiarity is effective for debugging datasets.

Related readings and updates.

Understanding and Visualizing Data Iteration in Machine Learning

Successful machine learning (ML) applications require iterations on both modeling and the underlying data. While prior visualization tools for ML primarily focus on modeling, our interviews with 23 ML practitioners reveal that they improve model performance frequently by iterating on their data (e.g., collecting new data, adding labels) rather than their models. We also identify common types of data iterations and associated analysis tasks and…
See paper details

Data Platform for Machine Learning

In this paper, we present a purpose-built data management system, MLdp, for all machine learning (ML) datasets. ML applications pose some unique requirements different from common conventional data processing applications, including but not limited to: data lineage and provenance tracking, rich data semantics and formats, integration with diverse ML frameworks and access patterns, trial-and-error driven data exploration and evolution, rapid…
See paper details