A key algorithm for understanding the world is material segmentation, which assigns a label (metal, glass, etc.) to each pixel. We find that a model trained on existing data underperforms in some settings and propose to address this with a large-scale dataset of 3.2 million dense segments on 44,560 indoor and outdoor images, which is 23x more segments than existing data. Our data covers a more diverse set of scenes, objects, viewpoints and materials, and contains a more fair distribution of skin types. We show that a model trained on our data outperforms a state-of-the-art model across datasets and viewpoints. We propose a large-scale scene parsing benchmark and baseline of 0.729 per-pixel accuracy, 0.585 mean class accuracy and 0.420 mean IoU across 46 materials.

*=Equal Contributor

Related readings and updates.

NeILF: Neural Incident Light Field for Material and Lighting Estimation

We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry. In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons. Compared with recent approaches that approximate scene lightings as the 2D environment map, NeILF is a fully 5D light field that is capable…
See paper details

Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real images. We address this challenge with Hypersim, a photorealistic synthetic dataset for holistic indoor scene understanding. To create our dataset, we leverage a large repository of synthetic scenes created by professional artists, and we generate 77,400 images of 461 indoor scenes with detailed per-pixel labels and…
See paper details