View publication

Voice technology has become ubiquitous recently. However, the accuracy, and hence experience, in different languages varies significantly, which makes the technology not equally inclusive. The availability of data for different languages is one of the key factors affecting accuracy, especially in training of all-neural end-to-end automatic speech recognition systems.

Cross-lingual knowledge transfer and iterative pseudo-labeling are two techniques that have been shown to be successful for improving the accuracy of ASR systems, in particular for low-resource languages, like Ukrainian.

Our goal is to train an all-neural Transducer-based ASR system to replace a DNN-HMM hybrid system with no manually annotated training data. We show that the Transducer system trained using transcripts produced by the hybrid system achieves 18% reduction in terms of word error rate. However, using a combination of cross-lingual knowledge transfer from related languages and iterative pseudo-labeling, we are able to achieve 35% reduction of the error rate.

Related readings and updates.

Joint Speech Transcription and Translation: Pseudo-Labeling with Out-of-Distribution Data

Self-training has been shown to be helpful in addressing data scarcity for many domains, including vision, speech, and language. Specifically, self-training, or pseudo-labeling, labels unsupervised data and adds that to the training pool. In this work, we investigate and use pseudo-labeling for a recently proposed novel setup: joint transcription and translation of speech, which suffers from an absence of sufficient parallel data resources. We…
See paper details

Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer

Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer any linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather…
See paper details