Restricting in-person interactions is an important technique for limiting the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although early research found strong associations between cell phone mobility and infection spread during the initial outbreaks in the United States, it is unclear whether this relationship persists across locations and time. We propose an interpretable statistical model to identify spatiotemporal variation in the association between mobility and infection rates. Using 1 year of US county-level data, we found that sharp drops in mobility often coincided with declining infection rates in the most populous counties in spring 2020. However, the association varied considerably in other locations and across time. Our findings are sensitive to model flexibility, as more restrictive models average over local effects and mask much of the spatiotemporal variation. We conclude that mobility does not appear to be a reliable leading indicator of infection rates, which may have important policy implications.

Related readings and updates.

MobileOne: An Improved One millisecond Mobile Backbone

Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deploying several mobile-friendly networks on a mobile device. We identify and analyze architectural and optimization bottlenecks in recent efficient neural…
See paper details

Modeling the Impact of User Mobility on COVID-19 Infection Rates Over Time

As the COVID-19 pandemic took off during early 2020, widespread interest in modeling the trajectory of infections emerged. This interest was predicated on the hope that accurate models could be developed and subsequently used to help governments and policy makers monitor the effect of lockdowns and determine safe points in time to reopen.

See highlight details