View publication

Self-training (ST), or pseudo-labeling has sparked significant interest in the automatic speech recognition (ASR) community recently because of its success in harnessing unlabeled data. Unlike prior semi-supervised learning approaches that relied on iteratively regenerating pseudo-labels (PLs) from a trained model and using them to train a new model, recent state-of-the-art methods perform ‘continuous training’ where PLs are generated using a very recent version of the model being trained. Nevertheless, these approaches still rely on bootstrapping the ST using an initial supervised learning phase where the model is trained on labeled data alone. We believe this has the potential for over-fitting to the labeled dataset in low resource settings and that ST from the start of training should reduce over-fitting. In this paper we show how we can do this by dynamically controlling the evolution of PLs during the training process in ASR. To the best of our knowledge, this is the first study that shows the feasibility of generating PLs from the very start of the training. We are able to achieve this using two techniques that avoid instabilities which lead to degenerate models that do not generalize. Firstly, we control the evolution of PLs through a curriculum that uses the online changes in PLs to control the membership of the cache of PLs and improve generalization. Secondly, we find that by sampling transcriptions from the predictive distribution, rather than only using the best transcription, we can stabilize training further. With these techniques, our ST models match prior works without an external language model.

Comparison diagram
Comparison between slimIPL (center) and how we control the cache by using PL evolution (bottom). The constant p_out from slimIPL now is dynamic and computed based on PL evolution for an unlabeled batch.

Related readings and updates.

Joint Speech Transcription and Translation: Pseudo-Labeling with Out-of-Distribution Data

Self-training has been shown to be helpful in addressing data scarcity for many domains, including vision, speech, and language. Specifically, self-training, or pseudo-labeling, labels unsupervised data and adds that to the training pool. In this work, we investigate and use pseudo-labeling for a recently proposed novel setup: joint transcription and translation of speech, which suffers from an absence of sufficient parallel data resources. We…
See paper details

Continuous Soft Pseudo-Labeling in ASR

This paper was accepted at the workshop "I Can’t Believe It’s Not Better: Understanding Deep Learning Through Empirical Falsification" Continuous pseudo-labeling (PL) algorithms such as slimIPL have recently emerged as a powerful strategy for semi-supervised learning in speech recognition. In contrast with earlier strategies that alternated between training a model and generating pseudo-labels (PLs) with it, here PLs are generated in end-to-end…
See paper details