View publication

Datasets that pair Knowledge Graphs (KG) and text together (KG-T) can be used to train forward and reverse neural models that generate text from KG and vice versa. However models trained on datasets where KG and text pairs are not equivalent can suffer from more hallucination and poorer recall. In this paper, we verify this empirically by generating datasets with different levels of noise and find that noisier datasets do indeed lead to more hallucination. We argue that the ability of forward and reverse models trained on a dataset to cyclically regenerate source KG or text is a proxy for the equivalence between the KG and the text in the dataset. Using cyclic evaluation we find that manually created WebNLG is much better than automatically created TeKGen and T-REx. Informed by these observations, we construct a new, improved dataset called LAGRANGE using heuristics meant to improve equivalence between KG and text and show the impact of each of the heuristics on cyclic evaluation. We also construct two synthetic datasets using large language models (LLMs), and observe that these are conducive to models that perform significantly well on cyclic generation of text, but less so on cyclic generation of KGs, probably because of a lack of a consistent underlying ontology.

Related readings and updates.

KGLens: Towards Efficient and Effective Knowledge Probing of Large Language Models with Knowledge Graphs

This paper was accepted at the Workshop Towards Knowledgeable Language Models at ACL 2024. Large Language Models (LLMs) might hallucinate facts, while curated Knowledge Graph (KGs) are typically factually reliable especially with domain-specific knowledge. Measuring the alignment between KGs and LLMs can effectively probe the factualness and identify the knowledge blind spots of LLMs. However, verifying the LLMs over extensive KGs can be…
See paper details

Growing and Serving Large Open-domain Knowledge Graphs

*= Equal Contributors Applications of large open-domain knowledge graphs (KGs) to real-world problems pose many unique challenges. In this paper, we present extensions to Saga our platform for continuous construction and serving of knowledge at scale. In particular, we describe a pipeline for training knowledge graph embeddings that powers key capabilities such as fact ranking, fact verification, a related entities service, and support for entity…
See paper details