View publication

In this work, we uncover a theoretical connection between two language model interpolation techniques, count merging and Bayesian interpolation. We compare these techniques as well as linear interpolation in three scenarios with abundant training data per component model. Consistent with prior work, we show that both count merging and Bayesian interpolation outperform linear interpolation. We include the first (to our knowledge) published comparison of count merging and Bayesian interpolation, showing that the two techniques perform similarly. Finally, we argue that other considerations will make Bayesian interpolation the preferred approach in most circumstances.

Related readings and updates.

Video Frame Interpolation via Structure-Motion based Iterative Feature Fusion

Video Frame Interpolation synthesizes non-existent images between adjacent frames, with the aim of providing a smooth and consistent visual experience. Two approaches for solving this challenging task are optical flow based and kernel-based methods. In existing works, optical flow based methods can provide accurate point-to-point motion description, however, they lack constraints on object structure. On the contrary, kernel-based methods focus on…
See paper details

Apple at Interspeech 2019

Apple attended Interspeech 2019, the world's largest conference on the science and technology of spoken language processing. The conference took place in Graz, Austria from September 15th to 19th. See accepted papers below.

Apple continues to build cutting-edge technology in the space of machine hearing, speech recognition, natural language processing, machine translation, text-to-speech, and artificial intelligence, improving the lives of millions of customers every day.

See event details