View publication

Large language models learn from their vast pre-training corpora, gaining the ability to solve an ever increasing variety of tasks; yet although researchers work to improve these datasets, there is little effort to understand how efficient the pre-training apparatus is at extracting ideas and knowledge from the data. In this work, we use retrieval augmented generation along with test-time compute as a way to quantify how much dataset value was left behind by the process of pre-training, and how this changes across scale. We demonstrate that pre-training then retrieving from standard and largely open-sourced datasets results in significant accuracy gains in MMLU, Math-500, and SimpleQA, which persist through decontamination. For MMLU we observe that retrieval acts as a ~5x compute multiplier versus pre-training alone. We show that these results can be further improved by leveraging additional compute at test time to parse the retrieved context, demonstrating a 10 percentage point improvement on MMLU for the public LLaMA 3.1 8B model. Overall, our results suggest that today’s pre-training methods do not make full use of the information in existing pre-training datasets, leaving significant room for progress.

Related readings and updates.

*Equal Contributors

A dominant paradigm in large multimodal models is to pair a large language de- coder with a vision encoder. While it is well-known how to pre-train and tune language decoders for multimodal tasks, it is less clear how the vision encoder should be pre-trained. A de facto standard is to pre-train the vision encoder with a discriminative objective, such as contrastive loss. This causes a mismatch between pre-training and the…

Read more

This paper introduces AIM, a collection of vision models pre-trained with an autoregressive objective. These models are inspired by their textual counterparts, i.e., Large Language Models (LLMs), and exhibit similar scaling properties. Specifically, we highlight two key findings: (1) the performance of the visual features scale with both the model capacity and the quantity of data, (2) the value of the objective function correlates with the…

Read more