Interfaces for machine learning (ML), information and visualizations about models or data, can help practitioners build robust and responsible ML systems. Despite their benefits, recent studies of ML teams and our interviews with practitioners (n=9) showed that ML interfaces have limited adoption in practice. While existing ML interfaces are effective for specific tasks, they are not designed to be reused, explored, and shared by multiple stakeholders in cross-functional teams. To enable analysis and communication between different ML practitioners, we designed and implemented Symphony, a framework for composing interactive ML interfaces with task-specific, data-driven components that can be used across platforms such as computational notebooks and web dashboards. We developed Symphony through participatory design sessions with 10 teams (n=31), and discuss our findings from deploying Symphony to 3 production ML projects at Apple. Symphony helped ML practitioners discover previously unknown issues like data duplicates and blind spots in models while enabling them to share insights with other stakeholders.

*=Contributed equally

Related readings and updates.

Dataset and Network Introspection ToolKit (DNIKit)

We introduce the Data and Network Introspection toolkit DNIKit, an open source Python framework for analyzing machine learning models and datasets. DNIKit contains a collection of algorithms that all operate on intermediate network responses, providing a unique understanding of how the network perceives data throughout the different stages of computation. With DNIKit, you can: create a comprehensive dataset analysis report find dataset samples…
See paper details

Actionable Data Insights for Machine Learning

*= Equal Contributors Artificial Intelligence (AI) and Machine Learning (ML) have made tremendous progress in the recent decade and have become ubiquitous in almost all application domains. Many recent advancements in the ease-of-use of ML frameworks and the low-code model training automations have further reduced the threshold for ML model building. As ML algorithms and pre-trained models become commodities, curating the appropriate training…
See paper details