View publication

In recent years, all-neural, end-to-end (E2E) ASR systems gained rapid interest in the speech recognition community. They convert speech input to text units in a single trainable Neural Network model. In ASR, many utterances contain rich named entities. Such named entities may be user or location specific and they are not seen during training. A single model makes it inflexible to utilize dynamic contextual information during inference. In this paper, we propose to train a context aware E2E model and allow the beam search to traverse into the context FST during inference. We also propose a simple method to adjust the cost discrepancy between the context FST and the base model. This algorithm is able to reduce the named entity utterance WER by 57 percent with little accuracy degradation on regular utterances. Although an E2E model does not need pronunciation dictionary, it's interesting to make use of existing pronunciation knowledge to improve accuracy. In this paper, we propose an algorithm to map the rare entity words to common words via pronunciation and treat the mapped words as an alternative form to the original word during recognition. This algorithm further reduces the WER on the named entity utterances by another 31 percent.

Related readings and updates.

Noise-robust Named Entity Understanding for Virtual Assistants

Named Entity Understanding (NEU) plays an essential role in interactions between users and voice assistants, since successfully identifying entities and correctly linking them to their standard forms is crucial to understanding the user's intent. NEU is a challenging task in voice assistants due to the ambiguous nature of natural language and because noise introduced by speech transcription and user errors occur frequently in spoken natural…
See paper details

Apple at Interspeech 2020

Apple is sponsoring the thirty-second Interspeech conference, which will be held virtually from October 25 to 29. Interspeech is a global conference focused on cognitive intelligence for speech processing and application.

See event details