View publication

Application developers advertise their Apps by creating product pages with App images, and bidding on search terms. It is then crucial for App images to be highly relevant with the search terms. Solutions to this problem require an image-text matching model to predict the quality of the match between the chosen image and the search terms. In this work, we present a novel approach to matching an App image to search terms based on fine-tuning a pre-trained LXMERT model. We show that compared to the CLIP model and a baseline using a Transformer model for search terms, and a ResNet model for images, we significantly improve the matching accuracy. We evaluate our approach using two sets of labels: advertiser associated (image, search term) pairs for a given application, and human ratings for the relevance between (image, search term) pairs. Our approach achieves 0.96 AUC score for advertiser associated ground truth, outperforming the transformer+ResNet baseline and the fine-tuned CLIP model by 8% and 14%. For human labeled ground truth, our approach achieves 0.95 AUC score, outperforming the transformer+ResNet baseline and the fine-tuned CLIP model by 16% and 17%.

Related readings and updates.

MOFI: Learning Image Representation from Noisy Entity Annotated Images

In this paper, we introduce a novel approach to automatically assign entity labels to images from existing noisy image-text pairs. The approach employees a named entity recognition model to extract entities from text, and uses a CLIP model to select the right entities as the labels of the paired image. The approach is simple, and can be readily scaled up to billions of image-text pairs mined from the web, through which we have successfully…
See paper details

Improving the Realism of Synthetic Images

Most successful examples of neural nets today are trained with supervision. However, to achieve high accuracy, the training sets need to be large, diverse, and accurately annotated, which is costly. An alternative to labelling huge amounts of data is to use synthetic images from a simulator. This is cheap as there is no labeling cost, but the synthetic images may not be realistic enough, resulting in poor generalization on real test images. To help close this performance gap, we've developed a method for refining synthetic images to make them look more realistic. We show that training models on these refined images leads to significant improvements in accuracy on various machine learning tasks.

See highlight details