View publication

Teleoperation for robot imitation learning is bottlenecked by hardware availability. Can high-quality robot data be collected without a physical robot? We present a system for augmenting Apple Vision Pro with real-time virtual robot feedback. By providing users with an intuitive understanding of how their actions translate to robot motions, we enable the collection of natural barehanded human data that is compatible with the limitations of physical robot hardware. We conducted a user study with 15 participants demonstrating 3 different tasks each under 3 different feedback conditions and directly replayed the collected trajectories on physical robot hardware. Results suggest live robot feedback dramatically improves the quality of the collected data, suggesting a new avenue for scalable human data collection without access to robot hardware.

Related readings and updates.

Embedding Pose Graph, Enabling 3D Foundation Model Capabilities with a Compact Representation

This paper presents the Embedding Pose Graph (EPG), an innovative method that combines the strengths of foundation models with a simple 3D representation suitable for robotics applications. Addressing the need for efficient spatial understanding in robotics, EPG provides a compact yet powerful approach by attaching foundation model features to the nodes of a pose graph. Unlike traditional methods that rely on bulky data formats like voxel grids…
See paper details

ARtonomous: Introducing Middle School Students to Reinforcement Learning Through Virtual Robotics

Typical educational robotics approaches rely on imperative programming for robot navigation. However, with the increasing presence of AI in everyday life, these approaches miss an opportunity to introduce machine learning (ML) techniques grounded in an authentic and engaging learning context. Furthermore, the needs for costly specialized equipment and ample physical space are barriers that limit access to robotics experiences for all learners. We…
See paper details