View publication

This paper was accepted at the Natural Language Reasoning and Structured Explanations workshop at ACL 2024.

Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains, including mitigating harm in LLM outputs, enhancing text summarization, and mathematical reasoning. This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (<1B parameters) LLMs. We specifically focus on code generation tasks that require writing appropriate API calls, which is challenging due to the well-known issue of hallucination in LLMs. Our framework extracts AI feedback from a larger LLM (e.g., GPT-3.5) through a specialized prompting strategy and uses this data to train a reward model towards better alignment from smaller LLMs. We run our experiments on the Gorilla dataset and meticulously assess the quality of the model-generated code across various metrics, including AST, ROUGE, and Code-BLEU, and develop a pipeline to compute its executability rate accurately. Our approach significantly enhances the fine-tuned LLM baseline's performance, achieving a 4.5% improvement in executability rate. Notably, a smaller LLM model (780M parameters) trained with RLAIF surpasses a much larger fine-tuned baseline with 7B parameters, achieving a 1.0% higher code executability rate.

Related readings and updates.

Gender Bias in LLMs

Large Language Models (LLMs) have made substantial progress in the past several months, shattering state-of-the-art benchmarks in many domains. This paper investigates LLMs' behavior with respect to gender stereotypes, a known stumbling block for prior models. We propose a simple paradigm to test the presence of gender bias, building on but differing from WinoBias, a commonly used gender bias dataset which is likely to be included in the training…
See paper details

ACL 2020

Apple sponsored the 58th Annual Meeting of the Association for Computational Linguistics (ACL) from July 5 - 10. ACL is the premier conference of the field of computational linguistics, covering a broad spectrum of research areas regarding computational approaches to natural language.

See event details