View publication

We describe a method for selecting relevant new training data for the LSTM-based domain selection component of our personal assistant system. Adding more annotated training data for any ML system typically improves accuracy, but only if it provides examples not already adequately covered in the existing data. However, obtaining, selecting, and labeling relevant data is expensive. This work presents a simple technique that automatically identifies new helpful examples suitable for human annotation. Our experimental results show that the proposed method, compared with random-selection and entropy-based methods, leads to higher accuracy improvements given a fixed annotation budget. Although developed and tested in the setting of a commercial intelligent assistant, the technique is of wider applicability.

Related readings and updates.

Generalizable Error Modeling for Human Data Annotation: Evidence from an Industry-Scale Search Data Annotation Program

Machine learning (ML) and artificial intelligence (AI) systems rely heavily on human-annotated data for training and evaluation. A major challenge in this context is the occurrence of annotation errors, as their effects can degrade model performance. This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks for three industry-scale ML applications (music streaming, video streaming, and…
See paper details

Improving Human-Labeled Data through Dynamic Automatic Conflict Resolution

This paper develops and implements a scalable methodology for (a) estimating the noisiness of labels produced by a typical crowdsourcing semantic annotation task, and (b) reducing the resulting error of the labeling process by as much as 20-30% in comparison to other common labeling strategies. Importantly, this new approach to the labeling process, which we name Dynamic Automatic Conflict Resolution (DACR), does not require a ground truth…
See paper details