View publication

This paper proposes a novel acoustic word embedding called Acoustic Neighbor Embeddings where speech or text of arbitrary length are mapped to a vector space of fixed, reduced dimensions by adapting stochastic neighbor embedding (SNE) to sequential inputs. The Euclidean distance between coordinates in the embedding space reflects the phonetic confusability between their corresponding sequences. Two encoder neural networks are trained: an acoustic encoder that accepts speech signals in the form of frame-wise subword posterior probabilities obtained from an acoustic model and a text encoder that accepts text in the form of subword transcriptions. Compared to a known method based on a triplet loss, the proposed method is shown to have more effective gradients for neural network training. Experimentally, it also gives more accurate results when the two encoder networks are used in tandem in a word (name) recognition task, and when the text encoder network is used standalone in an approximate phonetic match task. In particular, in an isolated name recognition task depending solely on Euclidean nearest-neighbor search between the proposed embedding vectors, the recognition accuracy is identical to that of conventional finite state transducer(FST)-based decoding using test data with up to 1 million names in the vocabulary and 40 dimensions in the embeddings.

Related readings and updates.

Single Training Dimension Selection for Word Embedding with PCA

In this paper, we present a fast and reliable method based on PCA to select the number of dimensions for word embeddings. First, we train one embedding with a generous upper bound (e.g. 1,000) of dimensions. Then we transform the embeddings using PCA and incrementally remove the lesser dimensions one at a time while recording the embeddings' performance on language tasks. Lastly, we select the number of dimensions while balancing model size and…
See paper details

Can Global Semantic Context Improve Neural Language Models?

Entering text on your iPhone, discovering news articles you might enjoy, finding out answers to questions you may have, and many other language-related tasks depend upon robust natural language processing (NLP) models. Word embeddings are a category of NLP models that mathematically map words to numerical vectors. This capability makes it fairly straightforward to find numerically similar vectors or vector clusters, then reverse the mapping to get relevant linguistic information. Such models are at the heart of familiar apps like News, search, Siri, keyboards, and Maps. In this article, we explore whether we can improve word predictions for the QuickType keyboard using global semantic context.

See article details