Apple Intelligence Foundation
Language Models
Tech Report 2025

Apple

We introduce two multilingual, multimodal foundation language models that power
Apple Intelligence features across Apple devices and services: (i) a ~3B-parameter
on-device model optimized for Apple silicon through architectural innovations such
as KV-cache sharing and 2-bit quantization-aware training; and (ii) a scalable server
model built on a novel Parallel-Track Mixture-of-Experts (PT-MoE) transformer that
combines track parallelism, mixture-of-experts sparse computation, and interleaved
global-local attention to deliver high quality with competitive cost on Apple’s Private
Cloud Compute platform. Both models are trained on large-scale multilingual and
multimodal datasets sourced via responsible web crawling, licensed corpora, and
high-quality synthetic data, then further refined with supervised fine-tuning and rein-
forcement learning on a new asynchronous platform. The resulting models support
several additional languages while understanding images and executing tool calls. In
public benchmarks and human evaluations, both the server model and the on-device
model match or surpass comparably sized open baselines.

A new Swift-centric Foundation Models framework exposes guided generation,
constrained tool calling, and LoRA adapter fine-tuning, allowing developers to inte-
grate these capabilities with a few lines of code. The latest advancements in Apple
Intelligence models are grounded in our Responsible Al approach with safeguards
like content filtering and locale-specific evaluation, as well as our commitment to
protecting our users’ privacy with innovations like Private Cloud Compute.

1 Introduction

Apple Intelligence integrates powerful generative Al right into the apps and experiences
users turn to everyday, all while protecting their privacy. At the 2025 Worldwide
Developers Conference we introduced a wide range of new Apple Intelligence features
that help users communicate, express themselves, and achieve their goals. To power
these features, we have created a new generation of language foundation models
specifically developed to enhance the Apple Intelligence features in our latest software
releases. We also introduced the new Foundation Models framework, which gives app
developers direct access to the on-device language foundation model at the core of
Apple Intelligence.

We crafted these generative models to power the wide range of intelligent features
integrated across our platforms. The models have improved tool-use and reasoning
capabilities, understand image and text inputs, are faster and more efficient, and are
designed to support 16 different languages. Our latest foundation models include
a compact, approximately 3-billion-parameter model optimized to run efficiently
on Apple silicon, alongside a mixture-of-expert server-based model with a novel
architecture tailored for Private Cloud Compute [Apple, 2024]. These two foundation
models are part of a larger family of generative models created by Apple to support
our users.

In this overview, we detail the data we used for training, the architectures of
the models we designed, the training recipes we employed, the techniques we used
to optimize inference, and our evaluation results when compared to similar models.
Throughout, we highlight how we achieved an expansion of capabilities and quality
improvements for the benefits of our users while also increasing the speed and efficiency
of on-device and Private Cloud Compute. Finally, in our continued commitment to
uphold our core values, we illustrate how Responsible Al principles are integrated
throughout the entire model development process.

Adapters

Multilingual
Data Preprocessing Pre-Training Post-Training Optimization Apple Foundation Models

Responsible Al principles inform all steps

Figure 1: Modeling overview for the Apple foundation models.

2 Model Architectures

We developed both the on-device and server models to meet a wide range of per-
formance and deployment needs. The on-device model is optimized for efficiency,
enabling low-latency inference with minimal resource usage, while the server model is
designed to deliver high accuracy and scalability for more complex tasks. Together,
they form a complementary suite of solutions adaptable to diverse application scenar-
ios. We first describe the general decoder architectures for both models, then explain
how we extended them to support image inputs with vision encoders.

2.1 On-Device Model

We incorporated the following improvements into the on-device model, resulting in a
significant reduction in inference latency and improved efficiency.

KV Cache Sharing. To improve the efficiency of our on-device architecture, we
divided the full model into two blocks. Block 1 contained 62.5% of the total transformer
layers, while Block 2 contained the remaining 37.5% of the transformer layers, but had
the key and value projections removed. Every key and value cache (KV cache) of Block
2 was directly shared with those generated by Block 1 [Snowflake, 2025], reducing KV
cache memory usage by 37.5%. Additionally, because Block 2 does not produce any
keys or values, the prefill stage is able to bypass all of its computation [Sun et al.,
2024] and reduce time-to-first-token (TTFT) by ~37.5%.

2.2 Server Model

We also made several major changes to improve the capacity and efficiency of the
server model.

Transformer Layer

I ' I
; Bd Synchronization R
\ : | ; 1
I ' I
Track Block . Track Block | Track Block . Track Block Track Block
TransformerMoE Layer - i -
[‘ | - \

o
a
x

©
o
o

Transformer Layer

' '-l E

I | !
l i | mdl Synchronization 4:—’—
I | . !
I | !
Track Block o Track Block ' Track Block i Track Block Track Block
I ' i
\ ! | . ‘ |

I ' I
Track 1 . Track 2 | . Track 4 Track N

'

Input

Figure 2: Diagram of the PT-MoE architecture. Each track is composed of multiple
track blocks, and each track block contains a fixed number of transformer /MoE layers.
Assume that we have a total of L layers and track block of depth D, then we reduce
the synchronization overhead from 2L (tensor parallelism) to L/D (track parallelism).
For example, if D = 4, the PT reduces 87.5% of the synchronization overhead.

Parallel Track (PT) Transformer. We introduced a new architecture, the Parallel
Track (PT) Transformer. Unlike the standard decoder-only transformer, which
consists of a single sequential stack of layers, the PT-transformer partitions the
model into multiple smaller transformers, referred to as tracks. Each track consists of
multiple stacked track blocks, each of which is a Transformer layer stack. The track
blocks process tokens independently, with synchronization across tracks applied only
at the input and output boundaries of each track block. This isolated design enables
straightforward parallel execution across tracks and reduces the synchronization
overhead found in conventional transformer decoders, such as those using tensor
parallelism. We refer to this approach as track parallelism. This improved training
and inference latency without compromising model quality.

Parallel Track Mixture of Experts (PT-MoE). To further scale the server-side model,
we introduced Mixture-of-Experts (MoE) layers [Du et al., 2022; Lepikhin et al., 2021;
Shazeer et al., 2017; Zoph et al., 2022| within each track block, leading to the PT-MoE
architecture. Since the experts in each MoE layer are local to their respective tracks,
the communication overhead can be more effectively overlapped with the computation
to improve training efficiency. Combined with track-level independence enabled by
track parallelism, this design allowed the model to scale efficiently while maintaining
low latency due to increased sparsity.

Specifically, we replaced the dense feed-forward network in every other transformer
layer with a MoE layer where the top-k routing is implemented via the grouped
general matrix multiplication (GEMM) [Gale et al., 2022], ensuring that no tokens are
dropped during routing. Figure 2 provides an overview of the PT-MoE architecture.

Interleaving Global and Local Attention Layers. We designed an interleaved atten-
tion architecture that alternates between local and global attention layers to support
long sequences efficiently [Beltagy et al., 2020]. Each repeating transformer block con-
sists of three local attention layers using a sliding window of size 4096 and rotational
positional embeddings (RoPE), followed by a global attention layer without positional

embeddings (NoPE) [Yang et al., 2025]. Omitting positional embeddings in the global
attention layer allows better length generalization by avoiding out-of-distribution
position issues in long contexts. This interleaved design maintains the model’s quality
while substantially reducing the KV cache size for long-context inference.

2.3 Vision Encoder

To enable visual understanding capabilities, we introduced a visual encoder that can
extract vision features from input images. The visual encoder was pre-trained on a
large amount of image data to enhance its performance.

The vision encoder includes two key components: a vision backbone to extract rich
visual representations from input images, and a vision-language adaptation module
to compress the vision representations and align these visual features with the token
representation of the model.

Vision Backbone. For the vision backbone, we adopted the standard Vision Trans-
former (ViT-g) [Dosovitskiy et al., 2020] with 1B parameters for the server model
and the more efficient ViTDet-L backbone [Li et al., 2022] with 300M parameters for
the on-device model.

Specifically, the on-device vision backbone adopted ViTDet, which uses window
attention in most vision transformer layers with only three cross-window global
attention layers. To further effectively capture and integrate both fine-grained local
details and broader global contextual information, we adopted a novel Register-
Window (RW) mechanism to the standard ViTDet. This approach is designed to
encode a global register (or class) token by enabling it to interact with distinct local
windows of an image before contributing to the overall global context aggregation.

Vision-Language Adaptation Module. The vision-language adaptation seeks to
compress visual features into a fixed number of image tokens, matching the token
dimension of the model. To achieve this, we employed a combination of a transformer
layer, a linear projection layer, and a 3x3 convolutional layer, enabling us to capture
both global and local visual information effectively. The linear projection layer
specifically maps the visual features to align with the decoder dimension of the LLM.
Subsequently, an average pooling layer was applied to further compress the vision
features into a fixed number of image tokens.

3 Data

We believe in training our models using diverse and high-quality data. This includes
data that we’ve licensed from publishers, curated from publicly available or open-
sourced datasets, and publicly available information crawled by our web-crawler,
Applebot.

We do not use our users’ private personal data or user interactions when training
our foundation models. Additionally, we take steps to apply filters to remove certain
categories of personally identifiable information and to exclude profanity and unsafe
material.

Further, we continue to follow best practices for ethical web crawling, including
following widely-adopted robots.txt protocols to allow web publishers to opt out
of their content being used to train Apple’s generative foundation models. Web
publishers have fine-grained controls over which pages Applebot can see and how
they are used while still appearing in search results within Siri and Spotlight.

3.1

Web Data

In the latest versions of our models, we have introduced several key enhancements in
the pre-training data pipeline:

e Improved Web Crawling Strategy. While respecting the opt-outs as noted

3.2

above, we continue to source a significant portion of the pre-training data for
our models from web content crawled by Applebot. These data span hundreds
of billions of pages and cover an extensive range of languages, locales, and
topics. Given the noisy nature of the web, Applebot employs advanced crawling
strategies to prioritize high-quality and diverse content. In particular, we
focused on capturing high-fidelity HTML pages which enrich the dataset with
both text and structured metadata for aligning media with the surrounding text
content. To improve relevance and quality, the system leveraged multiple signals
including domain-level language identification, topic distribution analysis, and
URL path pattern heuristics.

We took special care to accurately extract the content from documents and
modern websites. We enhanced our document collection with headless render-
ing, enabling full-page loading, dynamic content interaction, and JavaScript
execution, all of which are critical for extracting data from web architectures.
Special attention was given to websites that depend on dynamic content and
user interactions, enabling interaction simulation and reliable extraction of
meaningful information from complex pages.

Data Expansion. In addition to advanced crawling strategies, we significantly
expanded the scale and diversity of our training data. We incorporated a
larger volume of high-quality general-domain, mathematical, and programming
content. Additionally, we extended our multilingual support to new languages
that will be available later this year.

Enhanced Data Extraction Pipeline. Accurate content extraction from
HTML pages is critical to ensuring high-quality training data. In addition to
refining extraction strategies for specific domains, we incorporated LLMs into
our extraction pipeline, particularly for domain-specific documents. LLMs have
demonstrated strong performance in identifying and isolating the main content
sections of documents, often outperforming traditional rule-based methods.

Refined Data Filtering. High-quality filtering plays a critical role in overall
model performance. In this iteration of our models, we refined our data
filtering pipeline by reducing reliance on overly aggressive heuristic rules and
incorporating more model-based filtering techniques. We found that heuristics
discarded valuable high-quality tokens at times. By relaxing certain rules and
introducing model-informed signals, we were able to retain more informative
content, resulting in a larger and higher-quality pre-training dataset. We
tuned the model-based filters for each supported language by carefully selecting
training documents and labels.

Image Data

To enhance our models and enable visual understanding capabilities for Apple In-
telligence features, we introduced image data into the pre-training pipeline, using
high-quality licensed data along with publicly-available image data.

3.2.1 Image-Text Crawl Data

Using our web crawling strategy, we sourced pairs of images with corresponding
alt-texts. In addition to compliance filters, we filtered for data quality, including
image-text alignment. After de-duplication, this process yielded over 10B high quality
image-text pairs. In addition, we created image-text interleaved data by preserving
images in their originally observed text context from crawled documents. After quality
and compliance filtering, this resulted in 175M interleaved image-text documents,
containing over 550M images. We also use a filtered version of public image-text
interleaved data, which contains 294M images.

3.2.2 Synthetic Image Caption data

Since web-crawled image-text pairs are generally short and often do not comprehen-
sively describe visual details in images, we used synthetic image captioning data to
provide richer descriptions. Concretely, we developed an in-house image captioning
model capable of providing high quality captions at different levels of detail, ranging
from a list of key words to a paragraph-level comprehensive description. We generated
over 5B image-caption pairs that we used across the pre-training stages. In addition,
we created a sample of particularly high quality and comprehensive synthetic captions
by employing object detectors to classify the region of interest, captioning them in
isolation, and then summarizing these individual sub-captions as well as the respective
spatial information in the original image using an LLM to achieve even more detailed
and spatial-aware image descriptions for use in later training stages.

3.2.3 Text-Rich Image Data

There are cases where our models need to understand images with text in them, such
as to help users add an event to their calendar simply by pointing their iPhone at a
flyer or printed advertisement. To improve our models’ text-rich visual understanding
capabilities, we curated various sets of text-rich data, including PDFs, documents,
manuscripts, infographics, tables, and charts via licensed data, web crawling, and
in-house synthesis We then extracted the texts and generated both transcription
and question-answer pairs from the image data across languages supported by Apple
Intelligence.

3.2.4 High-quality Domain-Specific Image-text Data

To further improve our models’ capabilities, we curated a variety of types of image-text
data:

e High-quality caption data and grounded captions. We employed Con-
trastive Language-Image Pre-training (CLIP) [Radford et al., 2021] models and
Optical Character Recognition (OCR) tools as filters to obtain high-quality
images from the aforementioned synthetic image caption data. Then, we used
an in-house grounding model to localize the nouns in the captions and append
the coordinates after the nouns to form grounded captions.

e Tables, charts, and plots. For charts and plots, we first prompted an internal
LLM to generate synthetic data fields and corresponding values. Then we asked
the LLM to write code that can generate various types of chart and plot based
on the previous synthesized data samples. Lastly, we fed the charts, plots, and
data samples into a teacher model to generate QAs for model training. For
tables, we parsed the tables from publicly available websites and automatically

converted them into markdown format, then used both the image-markdown
pairs and image-synthetic QAs generated by a teacher model for model training.

¢ Knowledge-required domains. Certain images require domain-specific
knowledge to understand, such as those related to science, healthcare, and other
specialized fields. To curate training data for these knowledge-required domains,
we first retrieve relevant images from web-crawled datasets by matching domain-
specific keywords with the alt-texts of the images. We then refine this initial
selection by filtering out images with irrelevant visual content, utilizing CLIP
[Radford et al., 2021] to compare the image features with the text features of
category prompts. Finally we use a teacher model to synthesize questions and
answers based on the retrieved images, thereby generating high-quality training
data.

4 Pre-training

Our pre-training recipe has evolved to scale Apple Intelligence capabilities to support
more languages as well as a wider array of features, including those that require image
understanding.

4.1 Text Tokenizer

In order to better support new languages during this stage, we extended the text
tokenizer from a vocabulary size of 100k to 150k, achieving representation quality for
many additional languages with just 50% more tokens.

4.2 Vision Encoder

The training of the vision encoder was conducted in two stages: an initial contrastive
pre-training stage followed by a joint training stage with an LLM decoder. In the
first stage, we applied the CLIP method [Radford et al., 2021] to pre-train the
vision backbone using more than 6B image-text paired data, including synthetic
captions as well as alt text, thereby furnishing the vision backbone with a robust
initialization and strong visual grounding capabilities. For contrastive pre-training,
we used a 448x448 resolution. Additionally, we incorporated the masking strategy
from FLIP [Li et al., 2023] to enhance the training efficiency of ViT-g. In the second
stage, the vision backbone was jointly trained with the vision-language adaption
module and a compact LLM decoder with 302M parameters to align image features
with the LLM representation space. Unlike the CLIP training stage which used
only image-text paired data, we enriched the training data with high-quality text
data, interleaved image-text data, and specialized domain-specific image-text data.
We further enhanced the vision encoder’s ability to capture fine-grained details by
increasing the image resolution to 672x672 during this stage.

4.3 Text Pre-training

We trained our server model on 8192 v5p Cloud TPU accelerators provisioned as
4 x 2048 chip slices using the AXLearn [Lee et al., 2025| framework. Training was
conducted with a combination of data parallelism, fully-sharded-data-parallel, and
the newly introduced track parallelism for 13.4T tokens, where only data parallelism
crosses the slice boundary. Due to built-in fault tolerance mechanisms in the AXLearn
runtime we maintained an overall 93% good output, ensuring resiliency against possible
hardware or node interruption.

Compared to last year, we made several modifications to the on-device model
training pipeline to improve training efficiency and model quality. Specifically, we
first trained a dense on-device model for about 14T tokens and sparse-upcycled [Ko-
matsuzaki et al., 2023] it into a 64-expert, every-2-layer (i.e., interleaving dense and
sparse layers) MoE [Du et al., 2024] using only 1T high-quality data. Then, we
retrained the dense on-device model for the last 10% of tokens (about 1.4T) using a
distillation loss from the MoE teacher. This new pipeline not only reduced the cost of
training the large distillation teacher by 90% but also greatly improved the efficiency
of producing teacher logits. Moreover, retraining only the last 10% of tokens rather
than from scratch also eliminated the need for structural pruning. We found that
this new training pipeline boosted the performance of our pretrained on-device model
while drastically reducing the training costs.

4.4 Capability Expansion through Continued Pre-training

We adapted the pre-trained on-device and server model backbones to improve visual
understanding, while also improving code, math, multilingual, and long-context
understanding, using continued pre-training stages.

e Text-only continued pre-training improved the model alignment in four key
areas: Math, Code, Knowledge, and Multilingual. The training data consisted
of synthetic data, our highest-quality organic data, and some fraction of the
bulk pre-train data. Synthetic training examples were verified for correctness
wherever possible to eliminate hallucination and included code, math, and
machine-translated multilingual documents. In addition to the dataset changes,
we also updated our domain mixture weights—increasing the weight allocated
to code, math, and multilingual data. Specifically, we increased the total
mixture weight allocated to multilingual data from 8% to 30%, while maintaining
temperature sampling across languages within the multilingual bucket to balance
the risk of underfitting and overfitting for the low-resource languages. We found
that this curriculum provided the same benefit for multilingual as using a fixed
30% weight throughout while mitigating concerns of loss of performance in
English.

e Multimodal adaptation allowed improvements in visual understanding, while
avoiding regressions on text performance. The training data consisted of
60% high-quality text data from the text continued pre-training stage, 10%
interleaved image-text data, 28.5% image-text caption pairs, and 1.5% high-
quality domain-specific image-text pairs. This stage initialized the LLM decoder
from the text continued pre-train stage and the image tokenizer from the image
encoder training stage, while the vision-language adaptation module is trained
from scratch. For the on-device model, we paired it with a RW-ViTDet visual
encoder. Each image was resized to 672x672 pixel resolution and represented
by 144 token embeddings after being processed by the visual encoder. The
on-device model was trained using 1.3T tokens at 16k sequence length. For the
server model, we paired it with a ViT-g visual encoder. Each image is resized to
448x 448 pixel resolution and represented by 144 tokens after being processed
by the visual encoder. The server model is trained using 420B tokens at 8k
sequence length.

e The context lengthening stage increased the number of tokens the model
can attend to, while maintaining its core capabilities. We accomplished this
by continuing to train the model on sequences containing up to 65K tokens.
These longer sequences were sampled from naturally occurring long-form data,

like licensed books and code repositories, synthetic long-form data designed to
target specific capabilities, such as in-context learning and retrieval, and the
same data used in continued pre-training.

5 Post-training

Similar to pre-training, we have also evolved our post-training process to support
language expansion and visual understanding. While Apple Intelligence features
are powered through adapters on top of the base model, empirically we find that
improving general-purpose post-training lifts the performance of all features, as the
models have stronger capabilities across all use cases. To this aim, we’ve expanded
our use of synthetic data and conducted a focused quality hill climbing on tool-use
capabilities. Moreover, we also upgraded our RLHF infrastructure and recipe to
include more diverse reward signals and the image modality.

5.1 Supervised Fine-Tuning (SFT)

We further scaled up SFT by combining human written demonstrations and synthetic
data, with an emphasis on core vision capabilities. This includes:

e General knowledge. We collected text and image data across knowledge
domains in the form of information extraction and question answering to ensure
the model developed strong text and multimodal understanding abilities. We
employed model-based filtering techniques to detect and improve response
quality.

e Reasoning. We expanded our reasoning datasets on math and coding by
rewriting a large amount of web corpus, synthesizing responses and then fil-
tering with accurate reward signals such as execution feedback, ground truth
verification, and majority voting. For multi-modality, we collected several
high-quality STEM datasets (including primary/junior/senior math, physics
and chemistry), and also synthesized several high-quality math datasets based
on publicly available datasets. Furthermore, we expanded these high-quality
datasets with Chain-of-Thoughts (CoT) for sophisticated reasoning.

e Text-rich image understanding. We curated and synthesized image data
containing rich textual information, including but not limited to handwrit-
ing, documents, infographics, charts, plots, tables, chemical formulas, and
mathematical expressions. Furthermore, we augmented this dataset with data
specifically curated for the parsing of documents featuring complex layout struc-
tures. Additionally, our approach involved the training of models capable of
comprehending high-resolution images, enhancing their capability in processing
such multifaceted data.

e Multilingual Optical Character Recognition (OCR). We incorporated
high quality real-world multilingual OCR data including both printed and
handwritten text such as posters, menus, store signs, notebooks, etc. We
included this data to support OCR across 15 languages to be supported by
Apple Intelligence.

e Text and visual grounding. We improved the quality of SFT data on
grounding for tasks such as rewriting and summarization. We also expanded
the visual grounding dataset to empower the model with fine-grained image
understanding, grounding, and referring. This included interpreting visual

prompts, such as points and bounding boxes in the form of set-of-mark and/or
text annotations, and generating grounded responses by grounding text output
with image bounding boxes.

e Multi-image reasoning. We enhanced the model’s multi-image reasoning
capability by incorporating additional high-quality multi-image data.

We further bootstrapped the diversity of vision SFT data through retrieval-based
methods. Starting with a small set of seed prompts paired with images, we retrieved
additional images through an image search pipeline and synthesized prompts and cor-
responding responses for those retrieved images to construct additional synthetic SFT
data. To improve robustness and mitigate hallucination, we synthesized adversarial
prompts that deliberately requested information not present in the image, paired
with responses that appropriately refused to answer. We conducted ablation studies
to balance the mixture ratios of each component and ensure the model was helpful,
honest, and responsible.

Image Resolution in SFT. During SFT, we increased the effective resolution from
672 x 672 pixels (default resolution processed by the vision backbone) to 1344 x 1344
pixels by tiling images into a 2 x 2 grid. The model then processed a total of five
images, an overview image along with the four sub-images. This approach proved to
be effective for high-resolution and text-rich image understanding.

To accommodate for different latency requirements, the on-device model can
operate on a total of three different resolutions, with trade-offs between latency and
quality: the high-resolution mode, as mentioned above; the balanced mode, where we
provide only the overview image to the model; and a rapid mode where the vision
backbone processes an image with a resolution of 224 x 224 pixels. In the rapid mode,
the vision backbone produces only nine image tokens per image, compared to 144
in the other modes. Rapid mode is best suited to tasks that require only high-level
image understanding.

To train the different resolution modes, we proceeded as follows: for low-resolution
images, we flipped a coin on whether we used the rapid mode or one of the other
modes, whereas for high-resolution images, we used rapid mode only for 1% of the
images. Out of the remaining images, we randomly selected 20% of images for the
balanced mode.

5.2 Reinforcement Learning from Human Feedback (RLHF)

We continued to use the REINFORCE Leave-One-Out (RLOO) [Ahmadian et al.,
2024] method as our main RLHF algorithm, and applied RLHF after the SFT stage
for both the on-device model and the server model.

5.2.1 Reinforcement Learning (RL) Infrastructure

We upgraded our RL infrastructure to be more scalable and extensible. In particu-
lar, we built a distributed asynchronous RL infrastructure consisting of replicas of
trajectory generators (T'Gs) and a policy updater (PU). The TGs use efficient LLM
serving engines to run generations given the RL prompt dataset. Given the prompt
and the generated response, the TGs also calculate the reward. Our infrastructure is
flexible to leverage a diverse set of reward signals, such as reward model, ground truth
verification, code execution, LLM-as-a-judge, etc. The reward score can be calculated
either by a remote server (such as the reward model), or by simple local computations.
Once the responses and rewards are obtained, the TGs save the generated trajectories
to a replay buffer. The policy updater (PU) loads the trajectories from the replay

10

buffer and applies gradient updates to the model. The PU periodically saves the
model weights to a parameter server and once the TGs detect that new model weights
are saved to the parameter server, they load the new weights and use them for
generation. Figure 3 illustrates our RL infrastructure described above.

A4

A
ParameterSewer} [Replay Buffer]
A

A\ 4

RL Prompt Dataset Trajectory Generators (TGs): Reward Model Servers
P LLM Serving, Reward Calculation

Policy Updater (PU) J

Figure 3: Our distributed and asynchronous RL infrastructure.

There are a few benefits of our RL infrastructure. First, trajectory generation and
policy improvement can happen simultaneously, and thus it is computationally more
efficient than a synchronous training paradigm where the training alternates between
generation and policy updates. Second, since the TGs and PU are on different devices,
we can use the optimal parallelism for both of them, and use the optimized serving
techniques such as continuous batching on the TGs. The inference resources can also
be scaled up independently to increase the throughput. Third, as mentioned above,
our design makes it more convenient to incorporate a diverse set of prompt datasets
associated with different rewards in the RL training. In our experiments, we find that
our new RL infrastructure can achieve similar performance compared to an earlier
version of a synchronous RL system, while using 37.5% less devices and 75% less
compute time.

5.2.2 RLHF Recipe

All of the parameters of the model were updated in RL training, including the vision
encoder. We curated a set of prompt datasets and the associated rewards for the RLHF
stage. First, we collected a large volume of text-only and image-text preference data
to train a reward model. Similar to our previous model version [Gunter et al., 2024],
we used a preference loss function along with single-sided grading as regularization to
train the reward model. We then used the following prompt data categories for the
RLHF stage:

e Text-only prompts, including multilingual data, with rewards from the reward
model.

e Image-text prompts, with rewards from the reward model.
e Math prompts, with rule-based answer verification as the reward.

e Image-text STEM (science, technology, engineering, and mathematics) reasoning
prompts, with rule-based answer verification as the reward.

The datasets with the reward model as the reward focused on improving general
human preference, such as instruction following and helpfulness, whereas the datasets
with rule-based rewards focused on improving the mathematical and visual reasoning

11

capabilities. In our experiments, we observed significant gains, especially on human
preferences after applying the RLHF stage.

Since the datasets with text-only prompts, including multilingual, rely on the
reward model to provide the rewards, accuracy of the reward model is critical to the
effectiveness of RLHF recipe. We conducted an analysis of the consensus rate among
human graders using random samples of the preference data. The analysis shows
that human graders’ preferences differ for about 20-30% of the preference data, the
prompts of which are usually subjective, difficult, and/or obscure. Further analysis
shows that human graders tend to have a hard time agreeing on preference labels if
they likewise have difficulties assessing the overall helpfulness of the responses to the
prompts.

We trained a separate reward model, which was only used for prompt selection,
with additional heads to capture the cohesions of the preference data, where ranking
cohesion is defined as whether preference labels agree with derived rankings from
predicted overall helpfulness of the responses, and overall helpfulness cohesion is
defined as whether overall helpfulness labels agree with derived overall helpfulness
from predicted rewards. Leveraging the cohesion signals from this reward model and
through a neighborhood search, we proposed a novel prompt selection algorithm that
selects prompts with the highest cohesion scores from their semantic neighborhood.
This text-only prompt set, which includes multilingual sets, leads to significant gains
in both auto benchmarks (4% in Arena Hard [Li et al., 2024], 7% in win rate of
AlpacaEval [Dubois et al., 2025 versus GPT4-Turbo, 10% in Agent Sandbox [Lu et al.,
2025|, 7% in GPQA [Rein et al., 2023], 5% in Math500 [Lightman et al., 2023|) and
human benchmarks (1.3-2.0% increase in overall satisfaction across various locales)
compared with the previous version of a text-only dataset for a text-only model.

5.3 Tool-use

Tool-use data collection poses a significant challenge due to its multi-turn nature and
inherent software (tool) dependencies. To facilitate efficient and high quality tool-use
data collection, we designed a process-supervision annotation method as follows:
We created a tool-use agent annotation platform consisting of a reference model
and a tool execution environment. The environment contains a curated selection of
state-full and state-less tools and realistic human-authored databases as its initial
states. Annotators start by issuing a user query to the platform, which triggers a
sequence of tool calls initiated by the agent model until the model decides to respond
to the user. The platform returns the entire trajectory, including the tool invocation
details and the corresponding tool execution responses, as well as the final response
for the user. The platform supports reverting back to any turn in the dialog history,
including resetting database states, allowing annotators to inspect model predictions,
correct errors, and resume execution after the correction. Annotators can provide
follow-up requests until task completion. In the end, the annotation process yields a
tree-structured dataset, with a valid multi-turn tool-use SFT trajectory on the main
stem and abandoned tool-use attempts as branches.

5.4 Multilingual

We extended language support to new locales and languages, adding these languages
in phases to ensure high quality while avoiding regression in previously supported
languages.

By default, we induced the behavior that matches the output language to the
input. However, we also enable the option to use different languages for prompts

12

and responses by creating a small but diverse dataset with mixed languages that
represents 0.4% of the multilingual SFT mixture.

We introduced multilingual data in both the SFT and RLHF stages. In each
stage, we sampled English and multilingual datasets in an 80:20 proportion. Data
sets for both stages include a combination of human-written datasets and synthetic
datasets. In human evaluations we find that RLHF provides significant lift over SFT,
leading to 16:9 win/loss rate.

For hill-climbing on multilingual performance, we used the Instruction Following
Eval (IFEval [Zhou et al., 2023]) and AlpacaEval with GPT4-0 as a judge. We
collected hundreds of prompts in each supported language written by native speakers
because translated prompts were reported to be unnatural by our raters. With prompt
tuning, we achieved good alignment between auto evals and human evals, enabling
faster iteration.

6 Optimizations

We achieved an expansion of capabilities and quality improvements while increasing
inference efficiency and reducing power consumption of our on-device and Private
Cloud Compute (PCC) server models [Apple, 2024|. In addition to the architectural
optimizations discussed above, we compressed the on-device model to 2 bits-per-weight
using Quantization-Aware-Training (QAT), and we post-training compressed the server
model to 3.56 bits-per-weight using Adaptive Scalable Texture Compression (ASTC).
For both models, we quantized the embedding table to 4 bits per weight—using joint
training with the base weights during QAT for the on-device model, and post-training
quantization for the PCC model. We also quantized the KV-cache to 8 bits per weight
and introduced low-rank adapters to recover quality lost during compression.

Quantization Aware Training (QAT) is used to recover quality for the on-device model
after compressing it to 2 bits-per-weight. During training, we simulate quantization
effects by modifying the weight, W, computation as:

- \%%
W=s- (clamp(L? + 21, @min, Gmaz) — 2),

where s is the scaling factor, z is the zero point, and ¢in, ¢mas define the quantization
range. To handle the non-differentiable rounding operation during backpropagation,
we use the straight-through estimator (STE) to approximate gradients.

Unlike the conventional quantization scheme which derives the scale from weights
W, we introduce a learnable scaling factor f that adaptively fine-tunes the quantization
range for each weight tensor. This factor scales the absolute maximum value of the
tensor to compute the quantization scale as: s = fm;xi(lw\) Under aggressive 2-bit
quantization, initializing f is crucial for stable train?ﬁg;. We propose an iterative
method inspired by the Newton-Raphson algorithm to estimate a clipping scalar ¢ that
better reflects the central weight distribution while mitigating the influence of outliers.
In each iteration, weights above and below ¢ are rebalanced to iteratively refine the
estimate. After convergence, the scaling factor is initialized as: finir = W
This initialization leads to more stable training dynamics and empirically accelerates
convergence of the 2-bit model.

QAT follows the same training stages as the base model but with fewer itera-
tions. Unlike full-precision training, it is more sensitive to hyperparameter tuning.
We found the AdamW optimizer [Kingma and Ba, 2015] to be more stable than
Adafactor [Shazeer and Stern, 2018], likely due to the need for accurate momentum
estimation in low-bit regimes. Stability also improves with lower learning rates

13

and gradient scaling inversely proportional to the square root of the neuron count.
Additionally, we maintain an Exponential Moving Average (EMA) of the weights
‘W. This smoothing mechanism filters out noisy fluctuations in the weight trajectory,
leading to more stable evaluation behavior and consistently improved metrics for the
2-bit model. Consistent with recent work [Liu et al., 2025], we found a balanced 2-bit
set {-1.5, -0.5, 0.5, 1.5} yields smoother training with fewer training loss spikes than
an unbalanced set {-2, -1, 0, 1}. We set the weight decay to 0 to encourage the model
to utilize the full range of quantization levels, rather than collapsing weights around
the zero point.

Adaptive Scalable Texture Compression (ASTC) is a block-based lossy compression
format originally developed for efficient texture representation in GPU graphics
pipelines [Nystad et al., 2012|. The fixed-function hardware for ASTC decompression
within Apple GPUs enables these blocks to be decoded on-the-fly with effectively zero
compute cost from the perspective of the GPU shader or compute core. Leveraging
this hardware for neural network inference enables efficient decompression of model
weights without occupying general-purpose GPU compute resources.

We apply ASTC post-training to compress the final trained weights of the server
model. Specifically, we use 6x6 blocks (i.e., 36 weights per block), encoded into
128-bit ASTC compressed values. This yields a storage footprint of approximately
3.56 bits-per-weight. We adopt the HDR-ch mode of ASTC, which supports higher
precision encoding with non-negative 16-bit float channels. Since HDR-ch mode
does not allow negative values, we perform a simple transformation: for each 6x6
block, we subtract the minimum value across all weights in that block, ensuring the
data is strictly non-negative. This minimum value is stored separately as a single
float-16 scalar alongside the compressed block. During inference, when the block is
decompressed in hardware, the stored minimum is added back to the decompressed
values before use. This transformation is lossless with respect to the min-shift and
ensures correctness of downstream computations. The addition of the minimum
value is fused into the corresponding tensor operations (e.g., matrix multiplications),
ensuring that no separate reconstruction step is required and avoiding any runtime
cost associated with the transformation.

This approach significantly reduces memory bandwidth and storage overhead which
is particularly important for autoregressive decoding where weights are frequently
accessed. Importantly, since decompression occurs transparently in hardware, there
is no additional latency introduced during prompt-time inference.

Quality Recovery Adapters To recover model quality lost during the compression
stages, we apply Low-Rank Adaptation (LoRA) adapters to both models and further
fine-tune these adapters using the same data recipe as the base model training. These
adapters introduce a small number of trainable parameters into each layer, allowing
the model to adapt to the quantization and compression artifacts introduced in the
base model compression. Because the core model weights remain frozen, the LoRA
parameters effectively compensate for the lossy compression without requiring full
model retraining. For the server model, before performing ASTC, we pull out the
most significant singular vectors of the weights of the adapted layers into the LoRA
adapter (e.g. similar methods were presented by Meng et al. [2024]). The residuals,
which are the remaining singular vectors, make up the base model. Only the base
model is then compressed using ASTC. This results in lower compression error, as
ASTC now operates upon a smaller stack of singular vectors, and leaves the most
significant singular vectors unchanged in the adapters.

14

7 Foundation Models Framework

The new Foundation Models framework gives access to developers to start creating
their own reliable, production-quality generative Al features with the approximately
3B parameter on-device language model. The ~3B language foundation model at the
core of Apple Intelligence excels at a diverse range of text tasks like summarization,
entity extraction, text understanding, refinement, short dialog, generating creative
content, and more. While we have specialized our on-device model for these tasks,
it is not designed to be a chatbot for general world knowledge. We encourage app
developers to use this framework to design helpful features tailored to their apps.

To provide a simple and intuitive developer experience, the highlight of our
framework is an idiomatic Swift-centric approach to constrained decoding called
guided generation. Guided generation reduces the burden on developers for specifying
a response format in their prompt, manually parsing strings, or dealing with the
possibility of malformed model output. Instead, developers can directly generate rich
Swift data structures by adding a @Generable macro annotation to Swift structs or
enums. Guided generation uses a vertical integration with the model, the operating
system, and developer tools. It begins with the Swift macros, which translate
developer-defined data structures into a standardized response format specification.
When prompting the model, the framework injects the response format into the
prompt, and the model is able to understand and adhere to it because of post-training
on a special dataset designed with the guided generation specification. Next, an OS
daemon employs highly optimized, complimentary implementations of constrained
decoding and speculative decoding to boost inference speed while ensuring that
the model’s output conforms to the expected format. Based on these outputs, the
framework is able to create instances of Swift data structures from the model output.
This streamlines the developer experience by letting app developers write much
simpler code, backed by the Swift type system. The high level of abstraction of
the framework provides flexibility for us to continue improving performance and
generation quality under-the-hood. Backing guided generation and tool calling with a
standardized schema representation means that we can continue to train our model for
that format, and apps built on top of our framework will benefit from the improved
performance.

Tool calling offers developers the power to customize the ~3B model’s abilities by
creating tools that provide the model with specific kinds of information sources or ser-
vices. The framework’s approach to tool calling builds off of guided generation, where
it can guarantee the structural correctness of tool calls by preventing hallucinated
tool names or arguments. The developer provides an implementation of the simple
Tool Swift protocol, and the framework automatically and optimally handles the
potentially complex call graphs of parallel and serial tool calls. Model post-training
on tool-use data improved the model’s reliability for this framework feature.

Next, the framework simplifies reasoning about performance and context by
using an append-only, state-full session called LanguageModelSession. Behind the
scenes, this session is coupled to the model’s key-value (KV) cache. Filling the KV
cache can introduce latency, so the framework is built to prevent developers from
unintentionally invalidating it. LanguageModelSession supports streaming partially
generated content as the model produces it leveraging the notion of snapshots. The
framework handles the complex task of parsing partially generated output, and the
developer simply sees streaming output as a Swift object that grows over time.

We’ve carefully designed the framework to help app developers get the most
out of the on-device model. For specialized use cases that require teaching the~3B
model entirely new skills, we also provide a Python toolkit for training rank-32
LoRA adapters as well as optionally training a draft model for on-device speculative

15

decoding. Adapters produced by the toolkit are fully compatible with the Foundation
Models framework. However, each adapter is compatible with a single specific model
version, meaning that a new adapter must be trained for each new version of the
base model. Thus deploying one should be considered for advanced use cases after
thoroughly exploring the capabilities of the base model. Since each adapter takes
significant storage space, the Foundation Models framework leverages the Background
Assets framework to download just a single adapter that matches the base model’s
version on device. To host adapters with Background Assets, developers have the
flexibility to use their own server or use Apple’s servers.

In addition to providing an easy-to-use, powerful Swift API, the Foundation
Models framework comes with integrated tooling as part of the Xcode IDE. This
includes a playground for prompt engineering using Swift code, a performance profiler
for on-device model inference, and the ability to run the model directly in iOS and
visionOS simulators. Read more about the framework in the developer documentation.
The framework’s approach to Al safety is discussed in the Responsible Al section
below.

8 Evaluation

On pretraining benchmarks, we evaluated performance on Massive Multitask Language
Understanding (MMLU), Multilingual Massive Multitask Language Understanding
(MMMLU) and Multilingual Grade School Math (MGSM) and compared them to
publicly accessible external models in Table 1 and Table 2. We used the instruct
and non-thinking version of the models and evaluated them only on the languages
supported by AFM models with the Simple-Evals library OpenAT [2025]. We found
that AFM on-device model performs better than Qwen-2.5-3B, Gemma-3-4B and
Gemma-3n-E4B on MMLU/MMMLU, but it lags slightly behind Gemma-3n-E4B
on MGSM. AFM on-device model performs lower than the larger Qwen-3-4B model.
AFM server models lag slightly to LLaMA 4 Scout, whose total size and active
number of parameters are comparable, but has a bigger gap to larger models such as
Qwen-3-235B and the proprietary GPT-40.

Table 1: AFM On-Device vs external models on representative benchmarks.

Model MMLU MMMLU MGSM
AFM On-Device 67.85 60.60 74.91
Qwen-2.5-3B 66.37 56.53 64.80
Qwen-3-4B 75.10 66.52 82.97
Gemma-3-4B 62.81 56.71 74.74
Gemma-3n-E4B 57.84 50.93 7.7

Our model optimizations deliver significantly higher token throughput, substan-
tially lower latency, and remarkable reduced DRAM footprint during inference time,
comparing to models using 16-bit weights. We carefully tailor these optimizations to
best preserve the model quality. Table 3 presents representative quality evaluations
before and after applying all optimization techniques described in section 6, including
Quantization-Aware Training (QAT), ASTC, and quality recovery adapters.

Further, we conducted quality evaluations of our on-device and server-based models
offline using human graders. We evaluate along standard fundamental language
and reasoning capabilities, including Analytical Reasoning, Brainstorming, Chat,

16

Table 2: AFM Server vs external models on representative benchmarks.

Model MMLU MMMLU MGSM
AFM Server 80.20 74.60 87.09
LLaMA 4 Scout 84.88 80.24 90.34
Qwen-3-235B 87.52 82.95 92.00
GPT-40 85.70 84.00 90.30

Table 3: Representative metrics on quality impact through optimization.

Model MMLU IFEval (instruct) | Bits-per-weight
AFM On-Device 67.8 85.1 16
AFM On-Device Opt 64.4 82.3 2
AFM Server 80.0 89.1 16
AFM Server Opt 79.2 90.2 3.6

Classification, Closed Question and Answering, Coding, Creative Writing, Extraction,
Mathematical Reasoning, Open Question and Answering, Rewriting, Summarization,
and Tool-use.

As we expanded our model support to additional languages and locales, we
increased our evaluation task set to be locale specific. Human graders assessed the
model’s ability to produce a response that was native-sounding to a user in that
locale. For example, a model responding to an English sports question from a user in
Great Britain is expected to know "football" is a more locally appropriate term than
"soccer". Graders could flag the model’s response for a number of issues, including
un-localized terms or unnatural phrases. Locale specific evaluations used similar
categories as US English, with the exception of locale-agnostic domains like math
and coding.

We compared our models to publicly accessible external models, namely Qwen-
2.5-3B, Qwen-3-4B, Gemma-3-4B, Gemma-3n, LLaMA 4 Scout, Qwen-3-235B, and
OpenAT’s GPT-40. We found that our on-device model performs favorably against
the slightly larger Qwen-2.5-3B and Gemma-3n and is competitive against the larger
Qwen-3-4B and Gemma-3-4B, and our server-based model performs favorably against
LLaMA 4 Scout, whose total size and active number of parameters are comparable
to our server model, but is behind larger models such as Qwen-3-235B and the
proprietary GPT-4o.

With our model support expanding to the image modality, an evaluation set of
Image-Question pairs was used to assess Image Understanding capabilities. This
evaluation set contained similar categories as the text evaluation set, along with
image specific categories like Infographics, which challenge the model to reason about
text rich images. We compared the on-device model to vision models of similar size,
namely InternVL-2.5-4B, Qwen-2.5-VL-3B, and Gemma-3-4B, and our server model to
LLaMA 4 Scout, Qwen-2.5-VL-32B, and GPT-40. We found that Apple’s on-device
model performs favorably against the larger InternVL and Qwen and competitively
against Gemma, and our server model outperforms Qwen-2.5-VL, at less than half of
inference FLOPS, but is behind the larger LLaMA 4 Scout and GPT—4o.

17

Apple Foundation Model Human Evaluation on Text
® AFM wins Tie @ AFM loses

AFM-on-device versus AFM-server versus
EN EN

Qwen-2.5-38 518% Llama-4-Scout 59.6%
Qwen-3-4B 517% 227% Qwen-3-2358 54.8%
*Quen-3-4B-AWQ 59.4% 20.7% GPT-40 68.3%
Gemma-3-4B 571%
Gemma-3n-E4B 54.0% 20.2%
*Gemma-3n-E4B 52.6% 25.6%

EN outside US EN outside US

Qwen-2.5-33 39.5% 44.7% [P Liama-4-scout [ERD 541% 16.8%
Qwen-3-48 35.4% 45.3% awen-3-2358 [48.9% 23.0%
*Qwen-3-4B-AWQ 58.9% 15.5% GPT-40 58.3%

Gemma-3n-E4B

N

o

© N

- 9
X

©
2

Gemma-3-4B 45.9%
51.0% 18.5%
*Gemma-3n-E4B 54.1% 24.8%

PFIGSCJK PFIGSCJK

Qwen-2.5-3B 477% A Liama-4-Scout 56.5%
Quen-3-48B 50.1% 24.0% Qwen-3-2358 52.4%

©
g
®

*Qwen-3-4B-AWQ 456% 25.3% GPT-40 58.6%
Gemma-3-4B 44.2%
Gemma-3n-E4B 42.5% 35.3%
*Gemma-3n-E4B 37.6%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Fraction of Evaluation Prompts Fraction of Evaluation Prompts

Figure 4: Fraction of preferred responses in side-by-side evaluation of text responses
comparing Apple’s foundation model against publicly accessible models. Results
are presented across 3 locale groups, a lens by which we view Apple Intelligence’s
internationalization. English outside of the US for example includes English in Great
Britain and English in Canada, among others. PFIGSCJK refers to the languages
Portuguese, French, Italian, Spanish, Chinese (Simplified), Japanese, and Korean.
*Denotes models tested against Apple on-device compressed model.

Apple Foundation Model Human Evaluation on Images
@ AFM wins Tie @ AFM loses

AFM-on-device versus AFM-server versus
EN EN

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Fraction of Evaluation Prompts Fraction of Evaluation Prompts

Figure 5: Fraction of preferred responses in side-by-side evaluation of image responses
comparing Apple’s foundation model against comparable models.

Since these models are developed to deliver a wide range of features that can
help our users across everyday tasks, we perform detailed evaluation for each specific

18

feature, on top of base model evaluations. For example, consider the Visual Intelligence
feature which creates a calendar event from an image of a flyer. An evaluation set
of flyers is collected across a broad range of environmental settings, camera angles,
and other difficulties. This is used to assess the model’s ability to accurately extract
information from the flyer, including the date and location, to properly create the
calendar event.

9 Responsible Al

Apple Intelligence is designed with our core values at every step and built on a
foundation of groundbreaking privacy innovations. At every stage of developing and
advancing Apple Intelligence, we use our Responsible Al principles to guide our
features and models:

1. Empower users with intelligent tools: We identify areas where Al can be
used responsibly to create tools for addressing specific user needs. We respect
how our users choose to use these tools to accomplish their goals.

2. Represent our users: We build deeply personal products with the goal of
representing users around the globe authentically. We work continuously to
avoid perpetuating stereotypes and systemic biases across our Al tools and
models.

3. Design with care: We take precautions at every stage of our process, including
design, model training, feature development, and quality evaluation to identify
how our Al tools may be misused or lead to potential harm. We will continuously
monitor and proactively improve our Al tools with the help of user feedback.

4. Protect privacy: We protect our users’ privacy with powerful on-device
processing and groundbreaking infrastructure like Private Cloud Compute. We
do not use our users’ private personal data or user interactions when training
our foundation models.

These principles guide our work throughout the product development cycle,
informing our product design, policies, evaluations, and mitigations. As part of
Apple’s commitment to responsible Al, we have continued to identify and mitigate the
risks inherent to the use of foundation models, such as hallucinations and susceptibility
to prompt injections. Our safety taxonomy helps us identify sensitive content that
should be handled with care. The taxonomy is updated regularly based on ongoing
risk assessments, model capabilities, and internal and external human evaluations. It
currently contains 6 categories and 58 subcategories, which includes areas such as
Slurs and Hate Speech/Symbols, Controversial and Sensitive Topics, and Algorithmic
Biases and Stereotypes.

To evaluate the safety of Apple Intelligence, we assessed both the foundation models
as well as each feature that uses the models prior to deployment. For foundation
models, we combined internal and external human evaluation with auto-grading, and
compared our models to external models for benchmarking. We constructed targeted
safety evaluation datasets to assess the performance of the foundation model on
tasks such as summarization, question-answering, and brainstorming, as it applies to
high-risk and sensitive content. For individual features, we designed datasets that
focus on user-facing risks to specifically identify unwanted or unintended outcomes.
We also look at how potential gaps in quality can exacerbate risks when applied
to sensitive app-specific content. For example, we took care in designing the new
Foundation Models framework and supporting resources to help improve generative

19

Al safety for apps. The framework enforces a base level of safety with built-in safety
guardrails to mitigate harmful model input and output. To help app designers and
developers incorporate Al safety that is tailored to their Apps, we created educational
resources, such as new Generative Al Human Interface Guidelines for Responsible Al
principles.

As we expand our features to new languages, we expand our safety representation
across regions and cultures, and we continue to make improvements to account
for the wide cultural and linguistic diversity of our users. In addition to adhering
to local laws and regulations, we leverage a combination of high-quality external
representative data sources, engaged with internal and external legal, language, and
cultural experts, as well as reviewed precedents from previous product decisions
to ensure that our approach was contextually respectful and relevant. To design
our mitigation steps for multilingual use, we began with multilingual post-training
alignment at the foundational model level, then extended to feature-specific adapters
that integrate safety alignment data. Additionally, we expanded our guardrail models,
designed to intercept harmful prompts, with language-specific training data while
maintaining a multilingual adapter. We developed customized datasets to mitigate
culture-specific risks and biases and stereotypes in model outputs. Similarly, we
extended our evaluation datasets across languages and locales with tools such as
machine translation and targeted synthetic data generation, all refined by native
speakers. Finally, we conducted human red teaming across features to identify risks
unique to each locale. While we work to mitigate newly discovered risks in subsequent
versions of our foundational models, we may add related terms to an overrides list for
special handling to prevent harmful outputs; for example, a slur in a prompt may
trigger a warning in writing tools or prevent the generation of a Genmoji.

We continuously monitor and proactively improve our features with the help
of submitted user feedback. Feedback from users is a critical component of our
Responsible AT approach. In Image Playground, for instance, users can provide
feedback on generated images by tapping "thumbs up" or "thumbs down", with
the option to add comments. App developers can similarly offer feedback through
Feedback Assistant. Feedback from users and developers, along with evaluation data
and other metrics, helps us continuously improve Apple Intelligence features and
models.

10 Conclusion

We are excited to make the language foundation models at the core of Apple Intel-
ligence more efficient and more capable, unlocking a wide range of helpful features
integrated across our software platforms, and available to our users around the globe
across many languages. We are also giving app developers direct access to our on-
device language foundation model with a new Foundation Models framework. App
developers can take advantage of Al inference that is free of cost and accessible
with just a few lines of code, and bring capabilities such as text extraction and
summarization to their apps. The latest advancements in Apple Intelligence models
continue to draw on our core values, like our commitment to privacy, as well as our
Responsible AT approach.

References

Arash AhIPadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting REINFORCE style
optimization for learning from human feedback in LLMs. 2024.

20

https://developer.apple.com/design/human-interface-guidelines/generative-ai
https://developer.apple.com/bug-reporting/

Apple. Private cloud compute: A new frontier for Al privacy in the cloud. https:
//security.apple.com/blog/private-cloud-compute/, 2024. Accessed: 2025-
07-01.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer, 2020. URL https://arxiv.org/abs/2004.05150.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong
Xu, Maxim Krikun, Yanqgi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph,
Liam Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie
Webster, Marie Pellat, Kevin Robinson, Kathleen Meier-Hellstern, Toju Duke,
Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng Chen, and Claire Cui.
GLaM: Efficient scaling of language models with mixture-of-experts. 2022. URL
https://arxiv.org/abs/2112.06905.

Xianzhi Du, Tom Gunter, Xiang Kong, Mark Lee, Zirui Wang, Aonan Zhang, Nan
Du, and Ruoming Pang. Revisiting moe and dense speed-accuracy comparisons for
llm training, 2024. URL https://arxiv.org/pdf/2405.15052.

Yann Dubois, Balazs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-
controlled alpacaeval: A simple way to debias automatic evaluators, 2025. URL
https://arxiv.org/abs/2404.04475.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. MegaBlocks:
Efficient sparse training with mixture-of-experts. 2022. URL https://arxiv.org/
abs/2211.15841.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan
Zhang, Bowen Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple
Intelligence foundation language models. arXiv preprint arXiv:2407.21075, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz,
Basil Mustafa, Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby.
Sparse upcycling: Training mixture-of-experts from dense checkpoints. In The
Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=T5nUQDrM4u.

Mark Lee, Tom Gunter, Chang Lan, John Peebles, Hanzhi Zhou, Kelvin Zou, Sneha
Bangalore, Chung-Cheng Chiu, Nan Du, Xianzhi Du, Philipp Dufter, Ruixuan Hou,
Haoshuo Huang, Dongseong Hwang, Xiang Kong, Jinhao Lei, Tao Lei, Meng Li,
Li Li, Jiarui Lu, Zhiyun Lu, Yiping Ma, David Qiu, Vivek Rathod, Senyu Tong,
Zhucheng Tu, Jianyu Wang, Yongqgiang Wang, Zirui Wang, Floris Weers, Sam
Wiseman, Guoli Yin, Bowen Zhang, Xiyou Zhou, Danyang Zhuo, Cheng Leong,
and Ruoming Pang. Axlearn: Modular large model training on heterogeneous
infrastructure, 2025. URL https://arxiv.org/abs/2507.05411.

21

https://security.apple.com/blog/private-cloud-compute/
https://security.apple.com/blog/private-cloud-compute/
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2112.06905
https://arxiv.org/pdf/2405.15052
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2211.15841
https://arxiv.org/abs/2211.15841
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=T5nUQDrM4u
https://arxiv.org/abs/2507.05411

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard:
Scaling giant models with conditional computation and automatic sharding. 2021.
URL https://openreview.net/forum?id=qrwe7XHTmYb.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu,
Joseph E. Gonzalez, and Ion Stoica. From crowdsourced data to high-quality
benchmarks: Arena-hard and benchbuilder pipeline, 2024. URL https://arxiv.
org/abs/2406.11939.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision
transformer backbones for object detection. In Furopean conference on computer
vision, pages 280-296. Springer, 2022.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He.
Scaling language-image pre-training via masking. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 23390-23400, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step
by step. arXiv preprint arXiw:2305.20050, 2023.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei
Zhao, Scott Roy, Lisa Jin, Yunyang Xiong, Yangyang Shi, Lin Xiao, Yuandong
Tian, Bilge Soran, Raghuraman Krishnamoorthi, Tijmen Blankevoort, and Vikas
Chandra. ParetoQ: Scaling laws in extremely low-bit LLM quantization. CoRR,
abs/2502.02631, 2025. doi: 10.48550/ARXIV.2502.02631. URL https://doi.org/
10.48550/arXiv.2502.02631.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai,
Shuang Ma, Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang.
Toolsandbox: A stateful, conversational, interactive evaluation benchmark for llm
tool use capabilities, 2025. URL https://arxiv.org/abs/2408.04682.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values
and singular vectors adaptation of large language models. Advances in Neural
Information Processing Systems, 37:121038-121072, 2024.

Jorn Nystad, Anders Lassen, Andy Pomianowski, Sean FEllis, and Tom Olson.
Adaptive scalable texture compression. In Proceedings of the Fourth ACM SIG-
GRAPH/FEurographics Conference on High-Performance Graphics, pages 105-114,
2012.

OpenAl. simple-evals: A lightweight library for evaluating language models. https:
//github.com/openai/simple-evals, 2025. Accessed: 2025-07-13.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748-8763. PmLR, 2021.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe
Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-
level google-proof q&a benchmark, 2023. URL https://arxiv.org/abs/2311.
12022.

22

https://openreview.net/forum?id=qrwe7XHTmYb
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://doi.org/10.48550/arXiv.2502.02631
https://doi.org/10.48550/arXiv.2502.02631
https://arxiv.org/abs/2408.04682
https://github.com/openai/simple-evals
https://github.com/openai/simple-evals
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear
memory cost. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 4603-4611. PMLR, 2018. URL http://proceedings.mlr.press/
v80/shazeer18a.html.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. 2017. URL https://arxiv.org/abs/1701.06538.

Snowflake. Swiftkv: Accelerating enterprise llm workloads with knowledge preserv-
ing compute reduction. https://www.snowflake.com/en/engineering-blog/
swiftkv-1lm-compute-reduction/, 2025. Accessed: 2025-07-16.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu
Zhang, Jianyong Wang, and Furu Wei. You only cache once: Decoder-decoder
architectures for language models. Advances in Neural Information Processing
Systems, 37:7339-7361, 2024.

Bowen Yang, Bharat Venkitesh, Dwarak Talupuru, Hangyu Lin, David Cairuz, Phil
Blunsom, and Acyr Locatelli. Rope to nope and back again: A new hybrid attention
strategy, 2025. URL https://arxiv.org/abs/2501.18795.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan,
Denny Zhou, and Le Hou. Instruction-following evaluation for large language models.
2023.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam
Shazeer, and William Fedus. ST-MoE: Designing stable and transferable sparse
expert models. 2022. URL https://arxiv.org/abs/2202.08906.

23

http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://arxiv.org/abs/1701.06538
https://www.snowflake.com/en/engineering-blog/swiftkv-llm-compute-reduction/
https://www.snowflake.com/en/engineering-blog/swiftkv-llm-compute-reduction/
https://arxiv.org/abs/2501.18795
https://arxiv.org/abs/2202.08906

Contributors

We thank the following contributors for their work on this project: (in random order)

Hanzhi Zhou
Erik Hornberger
Pengsheng Guo
Xiyou Zhou
Saiwen Wang
Xin Wang

Yifei He

Xuankai Chang
Rene Rauch
Louis D’hauwe
John Peebles
Alec Doane
Kohen Chia
Jenna Thibodeau
Zi-Yi Dou
Yuanyang Zhang
Ruoming Pang
Reed Li

Zhifeng Chen
Jeremy Warner
Zhaoyang Xu
Sophy Lee

David Mizrahi
Ramsey Tantawi
Chris Chaney
Kelsey Peterson
Jun Qin

Alex Dombrowski
Mira Chiang
Aiswarya Raghavan
Gerard Casamayor
Qibin Chen
Aonan Zhang
Nathalie Tran
Jianyu Wang
Hang Su

Thomas Voice
Alessandro Pappalardo
Brycen Wershing
Prasanth Yadla
Rui Li

Priyal Chhatrapati
Ismael Fernandez
Yusuf Goren

Xin Zheng
Forrest Huang
Tao Lei

Eray Yildiz
Alper Kokmen

Gokul Santhanam
Areeba Kamal
Kaan Elgin

Dian Ang Yap
Jeremy Liu

Peter Gray
Howard Xing
Kieran Liu

Matteo Ronchi
Moritz Schwarzer-Becker
Yun Zhu

Mandana Saebi
Jeremy Snow
David Griffiths
Guillaume Tartavel
Erin Feldman
Simon Lehnerer

Fernando Bermudez-Medina

Hans Han

Joe Zhou

Xijaoyi Ren
Sujeeth Reddy
Zirui Wang

Tom Gunter
Albert Antony
Yuanzhi Li

John Dennison
Tony Sun

Yena Han

Yi Qin

Sam Davarnia
Jeffrey Bigham
Wayne Shan
Hannah Gillis Coleman
Guillaume Klein
Peng Liu
Muyang Yu

Jack Cackler
Yuan Gao
Crystal Xiao
Binazir Karimzadeh
Zhengdong Zhang
Felix Bai

Albin Madappally Jose
Feng Nan

Nazir Kamaldin
Dong Yin

Hans Hao
Yanchao Sun

24

Yi Hua

Charles Maalouf
Alex Guillen Garcia
Guoli Yin

Lezhi Li

Mohana Prasad Sathya Moorthy
Hongbin Gao

Jay Tang

Joanna Arreaza-Taylor
Faye Lao

Carina Peng

Josh Shaffer

Dan Masi

Sushma Rao
Tommi Vehvilainen
Senyu Tong
Dongcai Shen
Yang Zhao

Chris Bartels

Peter Fu

Qingqing Cao
Christopher Neubauer
Ethan Li

Mingfei Gao
Rebecca Callahan
Richard Wei
Patrick Dong

Alex Braunstein
Sachin Ravi

Adolfo Lopez Mendez
Kaiwei Huang

Kun Duan
Haoshuo Huang
Rui Qian

Stefano Ligas
Jordan Huffaker
Dongxu Li

Bailin Wang
Nanzhu Wang
Anuva Agarwal
Tait Madsen

Josh Newnham
Abhishek Sharma
Zhile Ren

Deepak Gopinath
Erik Daxberger
Saptarshi Guha
Oron Levy

Jing Lu

Nan Dun

Marc Kirchner
Yinfei Yang
Manjot Bilkhu

Dave Nelson
Anthony Spalvieri-Kruse
Juan Lao Tebar
Yang Xu

Phani Mutyala
Gabriel Jacoby-Cooper
Yingbo Wang

Karla Vega

Vishaal Mahtani
Darren Botten

Eric Wang

Hanli Li

Matthias Paulik
Haoran Yan

Navid Shiee

Yihao Qian

Bugu Wu

Qi Zhu

Ob Adaranijo
Bhuwan Dhingra
Zhe Gan

Nicholas Seidl

Grace Duanmu
Rong Situ

Yiping Ma

Yin Xia

David Riazati
Vasileios Saveris
Anh Nguyen

Michael (Taoyi) Lee
Patrick Sonnenberg
Chinguun Erdenebileg
Yanghao Li

Vivian Ma

James Chou

Isha Garg

Mark Lee

Keen You

Yuhong Li

Ransen Niu
Nandhitha Raghuram
Pulkit Agrawal
Henry Mason
Sumeet Singh

Keyu He

Hong-You Chen
Lucas Guibert

Shiyu Li

Varsha Paidi
Narendran Raghavan
Mingze Xu

Yuli Yang

Sergiu Sima

25

Irina Belousova
Sprite Chu
Afshin Dehghan
Philipp Dufter
David Haldimann
Zhen Yang
Margit Bowler
Chang Liu
Ying-Chang Cheng
Vivek Rathod
Syd Evans
Wilson Tsao
Dustin Withers
Haitian Sun
Biyao Wang
Peter Grasch
Walker Cheng
Yihao Feng
Vivek Kumar
Frank Chu
Victoria MonchJuan Haladjian
Doug Kang
Jiarui Lu

Ciro Sannino
Max Lam

Floris Weers
Bowen Pan
Kenneth Jung
Dhaval Doshi
Fangping Shi
Olli Saarikivi
Alp Aygar

Josh Elman
Cheng Leong
Eshan Verma
Matthew Lei
Jeff Nichols
Jiulong Shan
Donald Zhang
Lawrence Zhou
Stephen Murphy
Xianzhi Du
Chang Lan
Ankur Jain
Elmira Amirloo
Marcin Eichner
Naomy Sabo
Anupama Mann Anupama
David Qiu

Zhao Meng
Michael FitzMaurice
Peng Zhang
Simon Yeung

Chen Chen
Marco Zuliani
Andrew Hansen
Yang Lu

Brent Ramerth
Ziyi Zhong

Parsa Mazaheri
Matthew Hopkins
Mengyu Li

Simon Wang
David Chen
Farzin Rasteh
Chong Wang
Josh Gardner
Asaf Liberman
Haoxuan You
Andrew Walkingshaw
Xingyu Zhou
Jinhao Lei

Yan Meng
Quentin Keunebroek
Sam Wiseman
Anders Boesen Lindbo Larsen
Yi Zhang

Zaid Ahmed
Haiming Gang
Aaron Franklin
Kelvin Zou
Guillaume Seguin
Jonathan Janke
Rachel Burger

Co Giang

Cheng Shen

Jen Liu

Sanskruti Shah
Xiang Kong
Yiran Fei

TJ Collins

Chen Zhang
Zhiyun Lu
Michael Booker
Qin Ba

Yasutaka Tanaka
Andres Romero Mier Y Teran
Federico Scozzafava
Regan Poston
Jane Li

Eduardo Jimenez
Bas Straathof
Karanjeet Singh
Lindsay Hislop
Rajat Arora
Deepa Seshadri

26

Boyue Li
Colorado Reed
Zhen Li

TJ Lu

Yi Wang

Kaelen Haag
Nicholas Lusskin
Raunak Sinha
Rahul Nair
Eldon Schoop
Mary Beth Kery
Mehrdad Farajtabar
Brenda Yang
George Horrell
Shiwen Zhao
Dhruti Shah
Cha Chen
Bowen Zhang
Chang Gao

Devi Krishna
Jennifer Mallalieu
Javier Movellan
Di Feng

Emily Zhang
Sam Xu

Junting Pan
Dominik Moritz
Suma Jayaram
Kevin Smith
Dongseong Hwang
Daniel Parilla
Jiaming Hu
You-Cyuan Jhang
Emad Soroush
Fred Hohman
Nan Du

Emma Wang
Sam Dodge
Pragnya Sridhar
Joris Pelemans
Wei Fang

Nina Wenzel

Joseph Yitan Cheng
Hadas Kotek
Chung-Cheng Chiu
Meng Cao

Haijing Fu
Ruixuan Hou

Ke Ye

Diane Zhu

Nikhil Bhendawade
Joseph Astrauskas
Jian Liu

Sai Aitharaju
Wentao Wu
Artsiom Peshko
Hyunjik Kim
Nilesh Shahdadpuri
Andy De Wang

Qi Shan

Piotr Maj

Raul Rea Menacho
Justin Lazarow
Eric Liang Yang
Arsalan Farooq
Donghan Yu
David Giiera
Minsik Cho

Kavya Nerella
Yonggiang Wang
Tao Jia

John Park

Jeff Lai

Haotian Zhang
Futang Peng
Daniele Molinari
Aparna Rajamani
Tyler Johnson
Lauren Gardiner
Chao Jia

Violet Yao
Wojciech Kryscinski
Xiujun Li
Shang-Chen Wu

27

	Introduction
	Model Architectures
	On-Device Model
	Server Model
	Vision Encoder

	Data
	Web Data
	Image Data
	Image-Text Crawl Data
	Synthetic Image Caption data
	Text-Rich Image Data
	High-quality Domain-Specific Image-text Data

	Pre-training
	Text Tokenizer
	Vision Encoder
	Text Pre-training
	Capability Expansion through Continued Pre-training

	Post-training
	Supervised Fine-Tuning (SFT)
	Reinforcement Learning from Human Feedback (RLHF)
	Reinforcement Learning (RL) Infrastructure
	RLHF Recipe

	Tool-use
	Multilingual

	Optimizations
	Foundation Models Framework
	Evaluation
	Responsible AI
	Conclusion

