View publication

Speech-driven visual speech synthesis involves mapping features extracted from acoustic speech to the corresponding lip animation controls for a face model. This mapping can take many forms, but a powerful approach is to use deep neural networks (DNNs). However, a limitation is the lack of synchronized audio, video, and depth data required to reliably train the DNNs, especially for speaker-independent models. In this paper, we investigate adapting an automatic speech recognition (ASR) acoustic model (AM) for the visual speech synthesis problem. We train the AM on ten thousand hours of audio-only data. The AM is then adapted to the visual speech synthesis domain using ninety hours of synchronized audio-visual speech. Using a subjective assessment test, we compared the performance of the AM-initialized DNN to one with a random initialization. The results show that viewers significantly prefer animations generated from the AM-initialized DNN than the ones generated using the randomly initialized model. We conclude that visual speech synthesis can significantly benefit from the powerful representation of speech in the ASR acoustic models.

Related readings and updates.

Audiovisual Speech Synthesis using Tacotron2

Audiovisual speech synthesis involves synthesizing a talking face while maximizing the coherency of the acoustic and visual speech. To solve this problem, we propose using AVTacotron2, which is an end-to-end text-to-audiovisual speech synthesizer based on the Tacotron2 architecture. AVTacotron2 converts a sequence of phonemes into a sequence of acoustic features and the corresponding controllers of a face model. The output acoustic features are…
See paper details

On the Role of Visual Cues in Audiovisual Speech Enhancement

We present an introspection of an audiovisual speech enhancement model. In particular, we focus on interpreting how a neural audiovisual speech enhancement model uses visual cues to improve the quality of the target speech signal. We show that visual cues provide not only high-level information about speech activity, i.e., speech/silence, but also fine-grained visual information about the place of articulation. One byproduct of this finding is…
See paper details